Fiber-orientation tensors describe the relevant features of the fiber-orientation distribution compactly and are thus ubiquitous in injection-molding simulations and subsequent mechanical analyses. In engineering applications to date, the second-order fiber-orientation tensor is the basic quantity of interest, and the fourth-order fiber-orientation tensor is obtained via a closure approximation. Unfortunately, such a description limits the predictive capabilities of the modeling process significantly, because the wealth of possible fourth-order fiber-orientation tensors is not exploited by such closures, and the restriction to second-order fiber-orientation tensors implies artifacts. Closures based on the second-order fiber-orientation tensor face a fundamental problem - which fourth-order fiber-orientation tensors can be realized? In the literature, only necessary conditions for a fiber-orientation tensor to be connected to a fiber-orientation distribution are found. In this article, we show that the typically considered necessary conditions, positive semidefiniteness and a trace condition, are also sufficient for being a fourth-order fiber-orientation tensor in the physically relevant case of two and three spatial dimensions. Moreover, we show that these conditions are not sufficient in higher dimensions. The argument is based on convex duality and a celebrated theorem of D. Hilbert (1888) on the decomposability of positive and homogeneous polynomials of degree four. The result has numerous implications for modeling the flow and the resulting microstructures of fiber-reinforced composites, in particular for the effective elastic constants of such materials.
翻译:以纤维为方向的电压计, 描述纤维方向分布的相关特征, 因此在注射模拟和随后的机械分析中无处不在。 在迄今为止的工程应用中, 第二阶纤维方向的电压是基本兴趣量, 第四阶纤维方向的电压是通过封闭近似获得的。 不幸的是, 这种描述极大地限制了建模过程的预测能力, 因为这种关闭没有利用可能的四阶纤维方向的电压, 而限制二阶纤维方向的电压意味着人工制品。 在第二阶纤维方向的电压中, 关闭面临一个根本问题 - 第四阶纤维方向的电压可以实现? 在文献中, 只有纤维方向的电压的必要条件才能与纤维方向的分布联系起来。 在文章中, 我们表明, 通常认为必要的条件, 积极的半硫度模型和痕量状态, 也足以成为四阶纤维方向的电压调控器。 在二、 三等空间层面中, 以四阶流和四阶流的稳定性为标准, 我们展示了这些条件的双阶( ) 的稳定性和稳定性是 。