In the paper, we propose a class of faster adaptive Gradient Descent Ascent (GDA) methods for solving the nonconvex-strongly-concave minimax problems by using unified adaptive matrices, which include almost existing coordinate-wise and global adaptive learning rates. In particular, we provide an effective convergence analysis framework for our adaptive GDA methods. Specifically, we propose a fast Adaptive Gradient Descent Ascent (AdaGDA) method based on the basic momentum technique, which reaches a lower gradient complexity of $O(\kappa^4\epsilon^{-4})$ for finding an $\epsilon$-stationary point without large batches, which improves the existing results of the adaptive GDA methods by a factor of $O(\sqrt{\kappa})$. At the same time, we present an accelerated version of AdaGDA (VR-AdaGDA) method based on the momentum-based variance reduced technique, which achieves a lower gradient complexity of $O(\kappa^{4.5}\epsilon^{-3})$ for finding an $\epsilon$-stationary point without large batches, which improves the existing results of the adaptive GDA methods by a factor of $O(\epsilon^{-1})$. Moreover, we prove that our VR-AdaGDA method can reach the best known gradient complexity of $O(\kappa^{3}\epsilon^{-3})$ with the mini-batch size $O(\kappa^3)$. Some experimental results on policy evaluation and fair classifier tasks verify efficiency of our algorithms.
翻译:在论文中,我们建议采用一种适应性更迅速的梯度梯度梯度梯度加速法(GDA),通过使用统一的适应矩阵,解决非凝固型小型问题,其中包括几乎现有的协调性和全球适应性学习率。特别是,我们为我们适应性GDA方法提供了一个有效的趋同分析框架。具体地,我们根据基本动力技术,提出了一个快速适应性梯度梯度梯度(AdaGDA)方法(AdaGDA),该方法的梯度复杂性较低,为O(kappa)4\\epsilon*-4}美元(GDA),该方法用于在没有大批量的ODA(S)值调整方法下找到固定点的GDA方法的现有结果。 同时,我们提出了一种加速版的ADAGA(V-AGA)方法(VR-AGDA),该方法的梯度复杂性较低,以美元(Kappa)=4.5-Replon_-3}(美元),用于在不使用大量的OLA(x)的变压值(O)的变现变压法,该方法上,该方法的SLA(xx)的变现的变现的变现的GA),该方法可以提高(G_)的变现。