Anomaly detection is to identify samples that do not conform to the distribution of the normal data. Due to the unavailability of anomalous data, training a supervised deep neural network is a cumbersome task. As such, unsupervised methods are preferred as a common approach to solve this task. Deep autoencoders have been broadly adopted as a base of many unsupervised anomaly detection methods. However, a notable shortcoming of deep autoencoders is that they provide insufficient representations for anomaly detection by generalizing to reconstruct outliers. In this work, we have designed an adversarial framework consisting of two competing components, an Adversarial Distorter, and an Autoencoder. The Adversarial Distorter is a convolutional encoder that learns to produce effective perturbations and the autoencoder is a deep convolutional neural network that aims to reconstruct the images from the perturbed latent feature space. The networks are trained with opposing goals in which the Adversarial Distorter produces perturbations that are applied to the encoder's latent feature space to maximize the reconstruction error and the autoencoder tries to neutralize the effect of these perturbations to minimize it. When applied to anomaly detection, the proposed method learns semantically richer representations due to applying perturbations to the feature space. The proposed method outperforms the existing state-of-the-art methods in anomaly detection on image and video datasets.


翻译:异常的检测是确定与正常数据分布不相符的样本。 由于缺少异常数据, 培训受监督的深神经网络是一项繁琐的任务。 因此, 偏好采用不受监督的方法作为解决这一任务的共同方法。 深自动解剖器被广泛采用, 成为许多不受监督的异常探测方法的基础。 然而, 深自动解析器的一个显著缺点是, 它们通过概括化重建外部线来提供异常点检测的描述不充分。 在这项工作中, 我们设计了一个由两个相互竞争的组成部分组成的对抗框架, 一个反向扭曲器和一个自动解剖器。 因此, 选择了不受监督的方法作为解决这一任务的共同方法。 深自动解析器被广泛用作许多不受监督的异常点探测方法的基础。 但是, 深层自动解析器的一个明显缺陷是, 它们无法通过对异常点的解析方法生成异常点的反向目标。 我们设计了一个由两种相互竞争的对立框架, 由两个相互竞争的部件组成, 一个是反向扭曲的神经框架, 一个是反向扭曲器, 一个是自动解剖器, 一个是自动解剖器。 。 。 反向导器是同导器是同导器是一个同导的共导器,,, 用来在最小的变压器, 将现有的的构造的解解解解解析器, 以最小的构造的解解解析的解在最小的构造的解析方法,,,,,, 以最小化方法,, 以最小化方法, 将现有的解析法方法,,,, 使它应用到最小的解析到最小的解析的解析的解析的解析方法,,,,,,,,,, 的解算方法,,, 使, 使, 使, 使,, 使方法,, 使 使法, 使方法,, 使, 使 使 使, 的解析的解析的解算方法,,,,,,, 使它 使它 以 以 以 使 使 最深的解析的解析的解析的解析的

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Targeted Honeyword Generation with Language Models
Arxiv
0+阅读 · 2022年8月23日
Anomalous Instance Detection in Deep Learning: A Survey
Deep Anomaly Detection with Outlier Exposure
Arxiv
17+阅读 · 2018年12月21日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
44+阅读 · 2020年10月31日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员