Network flow is one of the most studied combinatorial optimization problems having innumerable applications. Any flow on a directed acyclic graph $G$ having $n$ vertices and $m$ edges can be decomposed into a set of $O(m)$ paths. In some applications, each solution (decomposition) corresponds to some particular data that generated the original flow. Given the possibility of multiple optimal solutions, no optimization criterion ensures the identification of the correct decomposition. Hence, recently flow decomposition was studied [RECOMB22] in the Safe and Complete framework, particularly for RNA Assembly. They presented a characterization of the safe paths, resulting in an $O(mn+out_R)$ time algorithm to compute all safe paths, where $out_R$ is the size of the raw output reporting each safe path explicitly. They also showed that $out_R$ can be $\Omega(mn^2)$ in the worst case but $O(m)$ in the best case. Hence, they further presented an algorithm to report a concise representation of the output $out_C$ in $O(mn+out_C)$ time, where $out_C$ can be $\Omega(mn)$ in the worst case but $O(m)$ in the best case. In this work, we study how different safe paths interact, resulting in optimal output-sensitive algorithms requiring $O(m+out_R)$ and $O(m+out_C)$ time for computing the existing representations of the safe paths. Further, we propose a new characterization of the safe paths resulting in the {\em optimal} representation of safe paths $out_O$, which can be $\Omega(mn)$ in the worst case but requires optimal $O(1)$ space for every safe path reported, with a near-optimal computation algorithm. Overall we further develop the theory of safe and complete solutions for the flow decomposition problem, giving an optimal algorithm for the explicit representation, and a near-optimal algorithm for the optimal representation of the safe paths


翻译:网络流是最经过研究的组合优化问题之一, 具有无法计数的应用程序。 因此, 在安全和完整框架中, 特别是 RNA 大会上, 任何流流的流都可以被解成一个 $O (m) 路径。 在一些应用中, 每种解决方案( 解析) 都与生成原始流程的某些特定数据相对应。 鉴于存在多个最佳解决方案的可能性, 没有优化标准可以确保正确分解。 因此, 在安全和完整框架中, 最近流的分解 [RECOMB22], 特别是RNA大会。 它们展示了对安全路径的描述, 导致 $( mn+out_ R) 时间算法可以解析所有安全路径, 其中$( R) 是原始输出报告每个安全路径的大小。 在最坏的案例中, $( m) 最坏的解析( m), 但是在最坏的案例中, 它们进一步展示了一个最精确的解析 $( $_C) 路径, 结果的解算( 美元) 真相的解算( 美元) 。

0
下载
关闭预览

相关内容

强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月21日
VIP会员
相关VIP内容
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员