Network flow is one of the most studied combinatorial optimization problems having innumerable applications. Any flow on a directed acyclic graph $G$ having $n$ vertices and $m$ edges can be decomposed into a set of $O(m)$ paths. In some applications, each solution (decomposition) corresponds to some particular data that generated the original flow. Given the possibility of multiple optimal solutions, no optimization criterion ensures the identification of the correct decomposition. Hence, recently flow decomposition was studied [RECOMB22] in the Safe and Complete framework, particularly for RNA Assembly. They presented a characterization of the safe paths, resulting in an $O(mn+out_R)$ time algorithm to compute all safe paths, where $out_R$ is the size of the raw output reporting each safe path explicitly. They also showed that $out_R$ can be $\Omega(mn^2)$ in the worst case but $O(m)$ in the best case. Hence, they further presented an algorithm to report a concise representation of the output $out_C$ in $O(mn+out_C)$ time, where $out_C$ can be $\Omega(mn)$ in the worst case but $O(m)$ in the best case. In this work, we study how different safe paths interact, resulting in optimal output-sensitive algorithms requiring $O(m+out_R)$ and $O(m+out_C)$ time for computing the existing representations of the safe paths. Further, we propose a new characterization of the safe paths resulting in the {\em optimal} representation of safe paths $out_O$, which can be $\Omega(mn)$ in the worst case but requires optimal $O(1)$ space for every safe path reported, with a near-optimal computation algorithm. Overall we further develop the theory of safe and complete solutions for the flow decomposition problem, giving an optimal algorithm for the explicit representation, and a near-optimal algorithm for the optimal representation of the safe paths
翻译:网络流是最经过研究的组合优化问题之一, 具有无法计数的应用程序。 因此, 在安全和完整框架中, 特别是 RNA 大会上, 任何流流的流都可以被解成一个 $O (m) 路径。 在一些应用中, 每种解决方案( 解析) 都与生成原始流程的某些特定数据相对应。 鉴于存在多个最佳解决方案的可能性, 没有优化标准可以确保正确分解。 因此, 在安全和完整框架中, 最近流的分解 [RECOMB22], 特别是RNA大会。 它们展示了对安全路径的描述, 导致 $( mn+out_ R) 时间算法可以解析所有安全路径, 其中$( R) 是原始输出报告每个安全路径的大小。 在最坏的案例中, $( m) 最坏的解析( m), 但是在最坏的案例中, 它们进一步展示了一个最精确的解析 $( $_C) 路径, 结果的解算( 美元) 真相的解算( 美元) 。