Image datasets are commonly used in psychophysical experiments and in machine learning research. Most publicly available datasets are comprised of images of realistic and natural objects. However, while typical machine learning models lack any domain specific knowledge about natural objects, humans can leverage prior experience for such data, making comparisons between artificial and natural learning challenging. Here, we introduce DELAUNAY, a dataset of abstract paintings and non-figurative art objects labelled by the artists' names. This dataset provides a middle ground between natural images and artificial patterns and can thus be used in a variety of contexts, for example to investigate the sample efficiency of humans and artificial neural networks. Finally, we train an off-the-shelf convolutional neural network on DELAUNAY, highlighting several of its intriguing features.
翻译:通常在心理物理实验和机器学习研究中使用图像数据集,大多数公开提供的数据集由现实和自然物体的图像组成。然而,虽然典型的机器学习模型缺乏关于自然物体的任何具体领域知识,但人类可以利用先前的经验来收集这些数据,对人工和自然学习进行比较,这具有挑战性。在这里,我们介绍一个由抽象绘画和艺术家名称标注的非图解性艺术品数据集DELAUNAY。该数据集提供了自然图像和人工形态之间的中间地带,因此可以用于多种情况,例如调查人类和人工神经网络的抽样效率。最后,我们在DELAUNAY上培训一个现成的共生神经网络,突出其中的一些诱人特征。