Semi-supervised learning approaches have emerged as an active area of research to combat the challenge of obtaining large amounts of annotated data. Towards the goal of improving the performance of semi-supervised learning methods, we propose a novel framework, HIERMATCH, a semi-supervised approach that leverages hierarchical information to reduce labeling costs and performs as well as a vanilla semi-supervised learning method. Hierarchical information is often available as prior knowledge in the form of coarse labels (e.g., woodpeckers) for images with fine-grained labels (e.g., downy woodpeckers or golden-fronted woodpeckers). However, the use of supervision using coarse category labels to improve semi-supervised techniques has not been explored. In the absence of fine-grained labels, HIERMATCH exploits the label hierarchy and uses coarse class labels as a weak supervisory signal. Additionally, HIERMATCH is a generic-approach to improve any semisupervised learning framework, we demonstrate this using our results on recent state-of-the-art techniques MixMatch and FixMatch. We evaluate the efficacy of HIERMATCH on two benchmark datasets, namely CIFAR-100 and NABirds. HIERMATCH can reduce the usage of fine-grained labels by 50% on CIFAR-100 with only a marginal drop of 0.59% in top-1 accuracy as compared to MixMatch. Code: https://github.com/07Agarg/HIERMATCH
翻译:半监督的学习方法已成为一个积极的研究领域,以克服获取大量附加说明数据的挑战。为了提高半监督的学习方法的绩效,我们提议了一个新框架,即Hiermatch,这是利用等级信息来降低标签成本和表现以及香草半监督的学习方法的半监督方法,利用等级信息来降低标签成本和表现以及香草的学习方法。等级信息通常作为先前知识提供,其形式是使用精细标签(例如,木匠)的微薄标签(例如,软弱的木匠或金色的木匠)图像。然而,我们提议使用粗皮类标签来改进半监督方法的Hiermmmmmmmmmass。由于缺乏精细标签,Hirrchook利用标签的等级,使用粗皮类标签作为薄弱的监督信号。此外,Hierm07-rchook是一种通用软件,用来改进任何半监督的精度精确度使用框架,我们用粗皮类分类的标签标准来改进了50-IMMM的进度技术。我们用最新状态的SIM的S-IMIM的进度评估结果,即我们用SIMIMIM的S-S-C-S-S-C-C-C-C-C-C-C-C-C-C-C-DIM-D-D-D-D-D-D-D-S-S-S-S-S-D-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S