While cosmological dark matter-only simulations relying solely on gravitational effects are comparably fast to compute, baryonic properties in simulated galaxies require complex hydrodynamic simulations that are computationally costly to run. We explore the merging of an extended version of the equilibrium model, an analytic formalism describing the evolution of the stellar, gas, and metal content of galaxies, into a machine learning framework. In doing so, we are able to recover more properties than the analytic formalism alone can provide, creating a high-speed hydrodynamic simulation emulator that populates galactic dark matter haloes in N-body simulations with baryonic properties. While there exists a trade-off between the reached accuracy and the speed advantage this approach offers, our results outperform an approach using only machine learning for a subset of baryonic properties. We demonstrate that this novel hybrid system enables the fast completion of dark matter-only information by mimicking the properties of a full hydrodynamic suite to a reasonable degree, and discuss the advantages and disadvantages of hybrid versus machine learning-only frameworks. In doing so, we offer an acceleration of commonly deployed simulations in cosmology.
翻译:虽然完全依赖引力效应的宇宙暗暗物质模拟可以比较快地进行计算,但模拟星系中的气态特性要求复杂的流体动力模拟进行计算成本高昂的模拟。我们探索将平衡模型的扩大版本、描述星系恒星、气体和金属含量演变的分析性形式主义合并成一个机器学习框架。这样,我们能够恢复比分析形式主义本身所能提供的特性更多的特性,在N体模拟中创建高速的流体动力模拟模拟模拟器,在N体模拟中用气态特性来传播银河暗物质浮流。虽然在达到的精度和速度优势之间存在着一种交换,但我们的结果却超越了一种方法,而这种方法只是利用机器学习来对一组气态特性进行分类。我们证明,这种新型的混合系统能够通过将全流体动力模型的特性模拟到一个合理的程度来迅速完成暗物质信息,并讨论混合和机器学习框架的利弊。在这样做时,我们提供了一种共同的加速度模拟。