We study the problem of generating a hyperplane tessellation of an arbitrary set $T$ in $\mathbb{R}^n$, ensuring that the Euclidean distance between any two points corresponds to the fraction of hyperplanes separating them up to a pre-specified error $\delta$. We focus on random gaussian tessellations with uniformly distributed shifts and derive sharp bounds on the number of hyperplanes $m$ that are required. Surprisingly, our lower estimates falsify the conjecture that $m\sim \ell_*^2(T)/\delta^2$, where $\ell_*^2(T)$ is the gaussian width of $T$, is optimal.
翻译:我们研究如何产生一个高空熔化问题,即任意设定的美元为$mathbb{R ⁇ n$,确保任何两个点之间的欧几里德距离与超高空分离的分数相匹配,直至一个预先指定的错误$\delta$。我们注重随机的、分布一致的千差错,并获得所需超高空飞机数的锐利界限。令人惊讶的是,我们较低的估计数字将美元=$sim\ell ⁇ 2(T)/\delta ⁇ 2$这个假设(即$\ell\ ⁇ 2(T)$是毛利宽度$T$的假设,是最佳的。