Couplings play a central role in the analysis of Markov chain convergence to stationarity and in the construction of novel Markov chain Monte Carlo diagnostics, estimators, and variance reduction techniques. The quality of the resulting bounds or methods typically depends on how quickly the coupling induces meeting between chains, a property sometimes referred to as its efficiency. The design of efficient Markovian couplings remains a difficult open question, especially for discrete time processes. In pursuit of this goal, in this paper we fully characterize the couplings of the Metropolis-Hastings (MH) transition kernel, providing necessary and sufficient conditions in terms of the underlying proposal and acceptance distributions. We apply these results to characterize the set of maximal couplings of the MH kernel, resolving open questions posed in \citet{OLeary2020} on the structure and properties of these couplings. These results represent an advance in the understanding of the MH kernel and a step toward the formulation of efficient couplings for this popular family of algorithms.
翻译:在分析马尔科夫链条与固定状态的趋同以及建造新颖的马尔科夫链条蒙特卡洛诊断、估测员和减少差异技术方面,串联在分析马尔科夫链链条与固定状态的趋同方面发挥着中心作用,由此得出的界限或方法的质量通常取决于串联如何迅速促成链条之间的会合,有时称之为其效率。设计高效的马尔科夫联结仍然是一个困难的未决问题,特别是对于离散的时间过程而言。为了实现这一目标,我们在本文件中充分说明了大都会-哈斯(MH)过渡内核的结合,在基本提议和接受分布方面提供了必要和充分的条件。我们运用这些结果来描述MH内圈的一套最大联结,解决citet{OLeary2020}关于这些联结的结构和特性的开放问题。这些结果是对MH内核的理解的进步和为这一流行的算法体系拟订高效的合并的一步。