The role of symmetry in Boolean functions $f:\{0,1\}^n \to \{0,1\}$ has been extensively studied in complexity theory. For example, symmetric functions, that is, functions that are invariant under the action of $S_n$, is an important class of functions in the study of Boolean functions. A function $f:\{0,1\}^n \to \{0,1\}$ is called transitive (or weakly-symmetric) if there exists a transitive group $G$ of $S_n$ such that $f$ is invariant under the action of $G$ - that is the function value remains unchanged even after the bits of the input of $f$ are moved around according to some permutation $\sigma \in G$. Understanding various complexity measures of transitive functions has been a rich area of research for the past few decades. In this work, we study transitive functions in light of several combinatorial measures. We look at the maximum separation between various pairs of measures for transitive functions. Such study for general Boolean functions has been going on for past many years. The best-known results for general Boolean functions have been nicely compiled by Aaronson et. al (STOC, 2021). The separation between a pair of combinatorial measures is shown by constructing interesting functions that demonstrate the separation. But many of the celebrated separation results are via the construction of functions (like "pointer functions" from Ambainis et al. (JACM, 2017) and "cheat-sheet functions" Aaronson et al. (STOC, 2016)) that are not transitive. Hence, we don't have such separation between the pairs of measures for transitive functions. In this paper we show how to modify some of these functions to construct transitive functions that demonstrate similar separations between pairs of combinatorial measures.


翻译:在 Boolean 函数中, 对称功能的作用 $: @ @ @ 0,1 ⁇ n\n\to @ @ @ @ 0. 1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
114+阅读 · 2020年10月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
0+阅读 · 2021年5月15日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
专知会员服务
114+阅读 · 2020年10月8日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员