The role of symmetry in Boolean functions $f:\{0,1\}^n \to \{0,1\}$ has been extensively studied in complexity theory. For example, symmetric functions, that is, functions that are invariant under the action of $S_n$, is an important class of functions in the study of Boolean functions. A function $f:\{0,1\}^n \to \{0,1\}$ is called transitive (or weakly-symmetric) if there exists a transitive group $G$ of $S_n$ such that $f$ is invariant under the action of $G$ - that is the function value remains unchanged even after the bits of the input of $f$ are moved around according to some permutation $\sigma \in G$. Understanding various complexity measures of transitive functions has been a rich area of research for the past few decades. In this work, we study transitive functions in light of several combinatorial measures. We look at the maximum separation between various pairs of measures for transitive functions. Such study for general Boolean functions has been going on for past many years. The best-known results for general Boolean functions have been nicely compiled by Aaronson et. al (STOC, 2021). The separation between a pair of combinatorial measures is shown by constructing interesting functions that demonstrate the separation. But many of the celebrated separation results are via the construction of functions (like "pointer functions" from Ambainis et al. (JACM, 2017) and "cheat-sheet functions" Aaronson et al. (STOC, 2016)) that are not transitive. Hence, we don't have such separation between the pairs of measures for transitive functions. In this paper we show how to modify some of these functions to construct transitive functions that demonstrate similar separations between pairs of combinatorial measures.


翻译:在 Boolean 函数中, 对称功能的作用 $: @ @ @ 0,1 ⁇ n\n\to @ @ @ @ 0. 1\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
113+阅读 · 2020年10月8日
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月17日
Arxiv
0+阅读 · 2021年5月15日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
113+阅读 · 2020年10月8日
【论文推荐】文本摘要简述
专知会员服务
68+阅读 · 2020年7月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
相关资讯
“CVPR 2020 接受论文列表 1470篇论文都在这了
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员