In most cases, the lack of parallel corpora makes it impossible to directly train supervised models for the text style transfer task. In this paper, we explore training algorithms that instead optimize reward functions that explicitly consider different aspects of the style-transferred outputs. In particular, we leverage semantic similarity metrics originally used for fine-tuning neural machine translation models to explicitly assess the preservation of content between system outputs and input texts. We also investigate the potential weaknesses of the existing automatic metrics and propose efficient strategies of using these metrics for training. The experimental results show that our model provides significant gains in both automatic and human evaluation over strong baselines, indicating the effectiveness of our proposed methods and training strategies.
翻译:在多数情况下,由于缺乏平行公司,无法直接培训受监管的文本风格传输任务模式。在本文件中,我们探索了培训算法,而不是优化明确考虑风格转移产出不同方面的奖励功能。特别是,我们利用原先用于微调神经机器翻译模型的语义相似度指标,明确评估系统产出和输入文本之间内容的保存情况。我们还调查了现有自动计量标准的潜在弱点,并提出了使用这些计量标准进行培训的有效战略。实验结果表明,我们的模型在对强强基线进行自动和人文评价方面都取得了重大收益,这表明了我们拟议方法和培训战略的有效性。