We consider characterizations of the maximal likelihood estimator (MLE) of samples from the Cauchy distribution. We characterize the MLE as an attractive fixed point of a holomorphic map on the upper-half plane. We show that the iteration of the holomorphic function starting at every point in the upper-half plane converges to the MLE exponentially fast. We can also characterize the MLE as a unique root in the upper-half plane of a certain univariate polynomial over $\mathbb R$. By this polynomial, we can derive the closed-form formulae for samples of size three and four, and furthermore show that for samples of size five, there is no algebraic closed-form formula.


翻译:我们考虑对Cauchy分布样本的最大可能性估计值(MLE)的定性。 我们将MLE定性为上半平面全貌图的具有吸引力的固定点。 我们显示,从上半平面每个点开始的全貌函数的迭代会以指数速度快速接近 MLE 。 我们还可以将MLE 定性为某种单体多面的上半平面上方的一个独特的根。 通过这一多元诺米亚,我们可以为三、四等大小的样本得出封闭式公式, 并进一步显示,对于五等大小的样本, 不存在代数封闭式公式 。

0
下载
关闭预览

相关内容

极大似然估计方法(Maximum Likelihood Estimate,MLE)也称为最大概似估计或最大似然估计,是求估计的另一种方法,最大概似是1821年首先由德国数学家高斯(C. F. Gauss)提出,但是这个方法通常被归功于英国的统计学家罗纳德·费希尔(R. A. Fisher) 它是建立在极大似然原理的基础上的一个统计方法,极大似然原理的直观想法是,一个随机试验如有若干个可能的结果A,B,C,... ,若在一次试验中,结果A出现了,那么可以认为实验条件对A的出现有利,也即出现的概率P(A)较大。极大似然原理的直观想法我们用下面例子说明。设甲箱中有99个白球,1个黑球;乙箱中有1个白球.99个黑球。现随机取出一箱,再从抽取的一箱中随机取出一球,结果是黑球,这一黑球从乙箱抽取的概率比从甲箱抽取的概率大得多,这时我们自然更多地相信这个黑球是取自乙箱的。一般说来,事件A发生的概率与某一未知参数theta有关, theta取值不同,则事件A发生的概率P(A/theta)也不同,当我们在一次试验中事件A发生了,则认为此时的theta值应是t的一切可能取值中使P(A/theta)达到最大的那一个,极大似然估计法就是要选取这样的t值作为参数t的估计值,使所选取的样本在被选的总体中出现的可能性为最大。
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
110+阅读 · 2020年5月15日
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
已删除
将门创投
11+阅读 · 2019年8月13日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
Msfvenom 常用生成 Payload 命令
黑白之道
9+阅读 · 2019年2月23日
【泡泡一分钟】基于运动估计的激光雷达和相机标定方法
泡泡机器人SLAM
25+阅读 · 2019年1月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【泡泡一分钟】RoomNet:端到端房屋布局估计
泡泡机器人SLAM
18+阅读 · 2018年12月4日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员