Unsupervised Domain Adaptation (UDA) can transfer knowledge from labeled source data to unlabeled target data of the same categories. However, UDA for first-person action recognition is an under-explored problem, with lack of datasets and limited consideration of first-person video characteristics. This paper focuses on addressing this problem. Firstly, we propose two small-scale first-person video domain adaptation datasets: ADL$_{small}$ and GTEA-KITCHEN. Secondly, we introduce channel-temporal attention blocks to capture the channel-wise and temporal-wise relationships and model their inter-dependencies important to first-person vision. Finally, we propose a Channel-Temporal Attention Network (CTAN) to integrate these blocks into existing architectures. CTAN outperforms baselines on the two proposed datasets and one existing dataset EPIC$_{cvpr20}$.


翻译:未受监督的域适应(UDA)可以将知识从标签源数据转移到同一类别无标签的目标数据。然而,用于第一人行动识别的UDA是一个未得到充分探讨的问题,缺乏数据集,对第一人视频特征的考虑有限。本文侧重于解决这一问题。首先,我们提议两个小规模第一人视频域适应数据集:ADL$ ⁇ small}$和GTEA-KITCHEN。第二,我们引入了频道时钟关注区块,以捕捉对第一人愿景十分重要的频道和时间关系并模拟其相互依存关系。最后,我们提议建立一个频道时钟注意网络(CTAN),将这些区块纳入现有结构。CTAN优于两个拟议数据集的基线和现有的1个数据数据集EPIC$ ⁇ cvpr20}。

0
下载
关闭预览

相关内容

Attention机制最早是在视觉图像领域提出来的,但是真正火起来应该算是google mind团队的这篇论文《Recurrent Models of Visual Attention》[14],他们在RNN模型上使用了attention机制来进行图像分类。随后,Bahdanau等人在论文《Neural Machine Translation by Jointly Learning to Align and Translate》 [1]中,使用类似attention的机制在机器翻译任务上将翻译和对齐同时进行,他们的工作算是是第一个提出attention机制应用到NLP领域中。接着类似的基于attention机制的RNN模型扩展开始应用到各种NLP任务中。最近,如何在CNN中使用attention机制也成为了大家的研究热点。下图表示了attention研究进展的大概趋势。
专知会员服务
32+阅读 · 2021年6月12日
【如何做研究】How to research ,22页ppt
专知会员服务
109+阅读 · 2021年4月17日
专知会员服务
110+阅读 · 2020年3月12日
开源书:PyTorch深度学习起步
专知会员服务
51+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
PTGAN for Person Re-Identification
统计学习与视觉计算组
4+阅读 · 2018年9月10日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Top
微信扫码咨询专知VIP会员