Physical human-robot collaboration requires strict safety guarantees since robots and humans work in a shared workspace. This letter presents a novel control framework to handle safety-critical position-based constraints for human-robot physical interaction. The proposed methodology is based on admittance control, exponential control barrier functions (ECBFs) and quadratic program (QP) to achieve compliance during the force interaction between human and robot, while simultaneously guaranteeing safety constraints. In particular, the formulation of admittance control is rewritten as a second-order nonlinear control system, and the interaction forces between humans and robots are regarded as the control input. A virtual force feedback for admittance control is provided in real-time by using the ECBFs-QP framework as a compensator of the external human forces. A safe trajectory is therefore derived from the proposed adaptive admittance control scheme for a low-level controller to track. The innovation of the proposed approach is that the proposed controller will enable the robot to comply with human forces with natural fluidity without violation of any safety constraints even in cases where human external forces incidentally force the robot to violate constraints. The effectiveness of our approach is demonstrated in simulation studies on a two-link planar robot manipulator.
翻译:由于机器人和人类在一个共享的工作空间中工作,人体-机器人合作要求严格的安全保障,因为机器人和人类在一个共享的工作空间中工作。本信为处理人类-机器人身体互动的安全临界位置限制提供了一个新的控制框架。拟议方法基于入门控制、指数控制屏障功能(ECBFs)和二次程序(QP),以便在人与机器人之间的武力互动期间实现合规,同时保障安全限制。特别是,进门控制作为二级非线性控制系统重新拟订,人类与机器人之间的互动力量被视为控制投入。通过使用EBFs-QP框架作为外部人类力量的配方,实时提供接受入门控制虚拟力量反馈。因此,一个安全轨迹源自拟议的低级控制者适应入门控制计划,以追踪安全限制。对拟议方法的创新是,拟议的控制器将使机器人能够在不违反任何安全限制的情况下与人类力量相适应,即使在人的外部力量同时迫使机器人违反机器人的机能操纵计划的情况下,也能够实时提供接受入门控制的虚拟力量反馈。在机器人的模拟中,我们对机器人计划进行了有效的模拟研究。