Extreme Value Theory plays an important role to provide approximation results for the extremes of a sequence of independent random variable when their distribution is unknown. An important one is given by the Generalised Pareto distribution $H_\gamma(x)$ as an approximation of the distribution $F_t(s(t)x)$ of the excesses over a threshold $t$, where $s(t)$ is a suitable norming function. In this paper we study the rate of convergence of $F_t(s(t)\cdot)$ to $H_\gamma$ in variational and Hellinger distances and translate it into that regarding the Kullback-Leibler divergence between the respective densities. We discuss the utility of these results in the statistical field by showing that the derivation of consistency and rate of convergence of estimators of the tail index or tail probabilities can be obtained thorough an alternative and relatively simplified approach, if compared to usual asymptotic techniques.
翻译:极端值理论对于在分布不明的情况下提供独立随机变量序列极端的近似结果具有重要作用。 重要理论是通用的帕雷托分布 $H ⁇ gamma(x) 美元作为超过门槛值$t美元(美元)的超值的分布近似值, 美元( t) 是合适的规范功能。 本文中我们研究了在变异和希灵格距离上美元与$H ⁇ gamma美元( $H ⁇ gamma) 的趋同率, 并将其转化为关于各自密度之间的 Kullback- Leibel差差值的数据。 我们讨论了这些结果在统计领域的效用, 显示尾指数或尾巴概率的估测器的一致性和趋同率的推导出可以彻底地获得一种替代和相对简化的方法, 如果与通常的缓慢技术相比较的话。