A $\lambda$-cover of a string $S$ is a set of strings $\{C_i\}_1^\lambda$ such that every index in $S$ is contained in an occurrence of at least one string $C_i$. The existence of a $1$-cover defines a well-known class of quasi-periodic strings. Quasi-periodicity can be decided in linear time, and all $1$-covers of a string can be reported in linear time plus the size of the output. Since in general it is NP-complete to decide whether a string has a $\lambda$-cover, the natural next step is the development of efficient algorithms for $2$-covers. Radoszewski and Straszy\'nski [ESA 2020] analysed the particular case where the strings in a $2$-cover must be of the same length. They provided an algorithm that reports all such $2$-covers of $S$ in time near-linear in $|S|$ and in the size of the output. In this work, we consider $2$-covers in full generality. Since every length-$n$ string has $\Omega(n^2)$ trivial $2$-covers (every prefix and suffix of total length at least $n$ constitute such a $2$-cover), we state the reporting problem as follows: given a string $S$ and a number $m$, report all $2$-covers $\{C_1,C_2\}$ of $S$ with length $|C_1|+|C_2|$ upper bounded by $m$. We present an $\tilde{O}(n + Output)$ time algorithm solving this problem, with Output being the size of the output. This algorithm admits a simpler modification that finds a $2$-cover of minimum length. We also provide an $\tilde{O}(n)$ time construction of a $2$-cover oracle which, given two substrings $C_1,C_2$ of $S$, reports in poly-logarithmic time whether $\{C_1,C_2\}$ is a $2$-cover of $S$.
翻译:暂无翻译