Robust point cloud registration in real-time is an important prerequisite for many mapping and localization algorithms. Traditional methods like ICP tend to fail without good initialization, insufficient overlap or in the presence of dynamic objects. Modern deep learning based registration approaches present much better results, but suffer from a heavy run-time. We overcome these drawbacks by introducing StickyPillars, a fast, accurate and extremely robust deep middle-end 3D feature matching method on point clouds. It uses graph neural networks and performs context aggregation on sparse 3D key-points with the aid of transformer based multi-head self and cross-attention. The network output is used as the cost for an optimal transport problem whose solution yields the final matching probabilities. The system does not rely on hand crafted feature descriptors or heuristic matching strategies. We present state-of-art art accuracy results on the registration problem demonstrated on the KITTI dataset while being four times faster then leading deep methods. Furthermore, we integrate our matching system into a LiDAR odometry pipeline yielding most accurate results on the KITTI odometry dataset. Finally, we demonstrate robustness on KITTI odometry. Our method remains stable in accuracy where state-of-the-art procedures fail on frame drops and higher speeds.


翻译:许多绘图和地方化算法的重要先决条件是实时的硬点云登记。 国际比较方案等传统方法往往在没有良好的初始化、重叠不足或存在动态物体的情况下失败。 现代深层次学习的登记方法带来更好的结果,但也有沉重的运行时间。 我们通过在点云上引入粘合点Pillars, 一种快速、准确和极强的中端三维特征匹配方法,克服了这些缺点。 它使用图形神经网络,并在基于多头自我和交叉注意的变压器的帮助下,对稀薄的三维关键点进行背景汇总。 网络输出被用作最佳运输问题的成本, 其解决方案产生最终匹配概率。 系统并不依赖手写特征描述器或超强的匹配战略。 我们在点云数据集上展示了登记问题的最新艺术准确性结果, 但它速度是前四倍, 然后引向深层方法。 此外, 我们将我们的匹配系统整合成一个基于高端变压式变压器的管道, 产生最准确的结果。 最后, 我们的系统并不依赖于手动的特征描述器或超强的精确度测量方法。

0
下载
关闭预览

相关内容

神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
73+阅读 · 2020年8月2日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Pointer Graph Networks
Arxiv
7+阅读 · 2020年6月11日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员