Current methods for viral discovery target evolutionarily conserved proteins that accurately identify virus families but remain unable to distinguish the zoonotic potential of newly discovered viruses. Here, we apply an attention-enhanced long-short-term memory (LSTM) deep neural net classifier to a highly conserved viral protein target to predict zoonotic potential across betacoronaviruses. The classifier performs with a 94% accuracy. Analysis and visualization of attention at the sequence and structure-level features indicate possible association between important protein-protein interactions governing viral replication in zoonotic betacoronaviruses and zoonotic transmission.
翻译:目前,病毒发现方法的目标是精确地识别病毒家族,但仍然无法区分新发现的病毒的动物潜力。在这里,我们用一种能引起注意的长期短期内存(LSTM)深神经网分类器,用于一个高度保护的病毒蛋白指标,以预测乙型脑病毒的动物潜力。分类器的精确度为94%。在序列和结构层面对注意力进行分析和可视化,表明在动物觉察的乙型病毒和动物传染病传播方面,有关病毒复制的重要蛋白质-蛋白相互作用之间可能存在联系。