Most analyses of randomised trials with incomplete outcomes make untestable assumptions and should therefore be subjected to sensitivity analyses. However, methods for sensitivity analyses are not widely used. We propose a mean score approach for exploring global sensitivity to departures from missing at random or other assumptions about incomplete outcome data in a randomised trial. We assume a single outcome analysed under a generalised linear model. One or more sensitivity parameters, specified by the user, measure the degree of departure from missing at random in a pattern mixture model. Advantages of our method are that its sensitivity parameters are relatively easy to interpret and so can be elicited from subject matter experts; it is fast and non-stochastic; and its point estimate, standard error and confidence interval agree perfectly with standard methods when particular values of the sensitivity parameters make those standard methods appropriate. We illustrate the method using data from a mental health trial.
翻译:多数随机试验分析结果不完整,多数随机试验的假设是无法检验的,因此应接受敏感度分析;然而,敏感度分析方法没有被广泛使用;我们提议一种平均分法,在随机试验中探讨全球对因随机或其它假设而因结果数据不完整而出现的偏离的偏差的敏感性;我们假设一个单一结果,在一般线性模型下加以分析;用户指定的一个或多个敏感度参数,测量模式混合模型中随机缺失的程度;我们方法的优点是,其敏感度参数比较容易解释,因此可以从主题专家那里获取;它迅速且不具有随机性;其点估计、标准错误和信任区与标准方法完全一致,因为敏感度参数的特定值使这些标准方法适当;我们用心理健康试验的数据来说明方法。