The bottleneck of distributed edge learning (DEL) over wireless has shifted from computing to communication, primarily the aggregation-averaging (Agg-Avg) process of DEL. The existing transmission control protocol (TCP)-based data networking schemes for DEL are application-agnostic and fail to deliver adjustments according to application layer requirements. As a result, they introduce massive excess time and undesired issues such as unfairness and stragglers. Other prior mitigation solutions have significant limitations as they balance data flow rates from workers across paths but often incur imbalanced backlogs when the paths exhibit variance, causing stragglers. To facilitate a more productive DEL, we develop a hybrid multipath TCP (MPTCP) by combining model-based and deep reinforcement learning (DRL) based MPTCP for DEL that strives to realize quicker iteration of DEL and better fairness (by ameliorating stragglers). Hybrid MPTCP essentially integrates two radical TCP developments: i) successful existing model-based MPTCP control strategies and ii) advanced emerging DRL-based techniques, and introduces a novel hybrid MPTCP data transport for easing the communication of the Agg-Avg process. Extensive emulation results demonstrate that the proposed hybrid MPTCP can overcome excess time consumption and ameliorate the application layer unfairness of DEL effectively without injecting additional inconstancy and stragglers.
翻译:分布式边缘学习(DEL)相对于无线的瓶颈已经从计算转向通信,主要是DEL的综合-稳定(Agg-Avg)进程。现有的基于DEL的传输控制协议(TCP)基于数据联网机制(TCP)对于应用层面的要求是应用不可知的,无法做出调整。结果,它们带来大量超时和不受欢迎的问题,如不公平和分流。其他先前的缓解解决方案有着相当大的局限性,因为它们平衡了跨路径工人的数据流动率,但在路径出现差异时往往出现不平衡的积压,造成分流。为了促进更具生产力的DEL,我们开发了基于传输控制协议(MPTCP)的混合多路径数据联网方案(MPTCP),将基于模型和深度强化学习(DRL)的MPTPCP(ML)结合起来,力求更快地复制DEL和更加公平(通过升级的递解)等。混合式的MPTPCP基本上结合了两种极端的TCP发展动态:i)成功的基于模型的监控战略和先进的REDR-S-S-S-Simal-C的升级的递化的循环运输过程,并引入了一种新型的混合的MPCT-CP-C-mod-modal-mod-moc-mod-mod-modal-modal-mod-mocal-modal-mod-mod-mod-mod-modal-mod-mod-motion-modal-modal-modal-modal-mod-mod-motion-motion-mod-mod-mod-motion-modal-mod-mod-mod-motion-motion-motion-mod-mod-mod-mod-mod-mod-motion-mod-mod-mod-mod-motion-moction-moction-mod-moction-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mod-mo