Massive machine type communication (mMTC) has attracted new coding schemes optimized for reliable short message transmission. In this paper, a novel deep learning-based near-orthogonal superposition (NOS) coding scheme is proposed to transmit short messages in multiple-input multiple-output (MIMO) channels for mMTC applications. In the proposed MIMO-NOS scheme, a neural network-based encoder is optimized via end-to-end learning with a corresponding neural network-based detector/decoder in a superposition-based auto-encoder framework including a MIMO channel. The proposed MIMO-NOS encoder spreads the information bits to multiple near-orthogonal high dimensional vectors to be combined (superimposed) into a single vector and reshaped for the space-time transmission. For the receiver, we propose a novel looped K-best tree-search algorithm with cyclic redundancy check (CRC) assistance to enhance the error correcting ability in the block-fading MIMO channel. Simulation results show the proposed MIMO-NOS scheme outperforms maximum likelihood (ML) MIMO detection combined with a polar code with CRC-assisted list decoding by 1-2 dB in various MIMO systems for short (32-64 bit) message transmission.
翻译:大型机型通信(MMTC)吸引了新的编码方案,为可靠的短信息传输提供了可靠的短信息传输优化的可靠信息传输。在本文件中,提议了一个新的深深学习的近正对角叠加定位(NOS)编码方案,在MMTC应用的多投入多输出(MIMO)频道中传递短信息。在拟议的MIMO-NOS计划中,一个基于神经网络的编码器通过尾端到端学习优化,在基于神经网络的相应检测器/解码器(包括MIMO频道在内的基于超定位的自动编码框架中进行相应的神经网络检测器/解码器。提议的 MIMO-NOS 编码方案将信息点扩散到多个近正方形高维矢量的多端多端多端多输出(MIMO)渠道中传输短信息。对于接收器来说,我们提出了一个新的K-最佳循环树研究算法,同时进行循环冗余检查(CRC)协助加强块平坦MIMO频道的错误纠正能力。模拟结果显示,拟议的MIMO-NOS-NOS计划将信息扩散到多个极地MIMO最大可能进行联合检测的MIMO-MLMLMLMDMLMDMDMLMDMDMLMLMLMLMMLMMMMMLMLOL 。