We generalize the Rayleigh quotient iteration to a class of functions called vector Lagrangians. The convergence theorem we obtained generalizes classical and nonlinear Rayleigh quotient iterations, as well as iterations for tensor eigenpairs and constrained optimization. In the latter case, our generalized Rayleigh quotient is an estimate of the Lagrange multiplier. We discuss two methods of solving the updating equation associated with the iteration. One method leads to a generalization of Riemannian Newton method for embedded manifolds in a Euclidean space while the other leads to a generalization of the classical Rayleigh quotient formula. Applying to tensor eigenpairs, we obtain both an improvements over the state-of-the-art algorithm, and a new quadratically convergent algorithm to compute all complex eigenpairs of sizes typical in applications. We also obtain a Rayleigh-Chebyshev iteration with cubic convergence rate, and give a clear criterion for RQI to have cubic convergence rate, giving a common framework for existing algorithms.
翻译:我们将Rayleigh 商数变换推广为一类函数,称为矢量 Lagrangians。 我们获得的趋同理论概括了古典和非线性Rayleigh 商数变换,以及色素和限制优化的迭代。 在后一种情况下, 我们的通用Rayleigh 商数是Lagrange 乘数的估计值。 我们讨论两种方法来解决与迭代相关的更新方程。 一种方法导致将Riemannian 牛顿法的内嵌式放在欧西里德空间, 而另一种方法则导致古典Rayleayleigh 商数公式的概括化。 应用了Solomor eigenpairs, 我们获得了对最新算法的改进, 以及一个新的四面趋一致算法, 来计算所有复杂且规模典型的应用。 我们还获得了Rayleilei- Chebyshev 等同率的Rieleilei- Chebyshev 方法, 并给出了RQI 的立方趋同率的明确标准, 提供了现有算法的共同框架。