In this paper, we are concerned with a non-asymptotic analysis of sampling algorithms used in nonconvex optimization. In particular, we obtain non-asymptotic estimates in Wasserstein-1 and Wasserstein-2 distances for a popular class of algorithms called Stochastic Gradient Langevin Dynamics (SGLD). In addition, the aforementioned Wasserstein-2 convergence result can be applied to establish a non-asymptotic error bound for the expected excess risk. Crucially, these results are obtained under a local Lipschitz condition and a local dissipativity condition where we remove the uniform dependence in the data stream. We illustrate the importance of this relaxation by presenting examples from variational inference and from index tracking optimization.
翻译:在本文中,我们对非康韦克斯优化中使用的抽样算法的非抽查分析感到关切,特别是,我们从瓦森施泰因-1和瓦森施泰因-2距离获得非抽查估计值,用于称为Stochatic Gradient Langevin Dynamics(SGLD)的一类流行算法。此外,上述瓦森施泰因-2趋同结果可以用来确定非抽查错误,用于应付预期的超重风险。关键是,这些结果是在本地的利普施奇特状态和本地的脱位状态下取得的,在这种状态下我们消除了数据流中的统一依赖性。我们通过举例说明变异推论和指数跟踪优化来说明这种放松的重要性。