This paper considers the graph signal processing problem of anomaly detection in time series of graphs. We examine two related, complementary inference tasks: the detection of anomalous graphs within a time series, and the detection of temporally anomalous vertices. We approach these tasks via the adaptation of statistically principled methods for joint graph inference, specifically multiple adjacency spectral embedding (MASE). We demonstrate that our method is effective for our inference tasks. Moreover, we assess the performance of our method in terms of the underlying nature of detectable anomalies. We further provide the theoretical justification for our method and insight into its use. Applied to a large-scale commercial search engine time series of graphs, our approaches demonstrate their applicability and identify the anomalous vertices beyond just large degree change.
翻译:本文审视了在时间序列图中异常现象探测的图形信号处理问题。 我们研究了两个相关的互补推论任务:在时间序列中检测异常图,以及检测暂时异常的脊椎。我们通过调整统计原则方法来应对这些任务,以进行联合图形推断,特别是多相邻光谱嵌入(MASE),我们证明我们的方法对我们的推断任务是有效的。此外,我们从可检测异常现象的基本性质的角度评估我们方法的绩效。我们进一步提供了我们方法和对其用途的洞察理论依据。我们的方法适用于大型商业搜索引擎时序图,我们的方法显示了它们的可适用性,并确定了超出较大变化范围的异常现象脊椎。