Lossy image compression is a many-to-one process, thus one bitstream corresponds to multiple possible original images, especially at low bit rates. However, this nature was seldom considered in previous studies on image compression, which usually chose one possible image as reconstruction, e.g. the one with the maximal a posteriori probability. We propose a learned image compression framework to natively support probabilistic decoding. The compressed bitstream is decoded into a series of parameters that instantiate a pre-chosen distribution; then the distribution is used by the decoder to sample and reconstruct images. The decoder may adopt different sampling strategies and produce diverse reconstructions, among which some have higher signal fidelity and some others have better visual quality. The proposed framework is dependent on a revertible neural network-based transform to convert pixels into coefficients that obey the pre-chosen distribution as much as possible. Our code and models will be made publicly available.
翻译:丢失图像压缩是一个多到一个过程, 因此一个位流与多个可能的原始图像相对应, 特别是低位速率。 但是, 先前的图像压缩研究很少考虑这种性质, 而在以前关于图像压缩的研究中, 通常选择一种可能的图像作为重建, 例如, 一种具有最大顺数概率的图像。 我们提议一个学习的图像压缩框架, 以本地支持概率解码。 压缩的位流被解成一系列参数, 即时将预选分布立即化; 然后, 将分布由解码器用于取样和重建图像。 解码器可能采用不同的取样策略, 并产生不同的重建, 其中某些具有更高的信号忠诚度, 另一些则具有更好的视觉质量 。 拟议的框架取决于一个基于可恢复的网络的转换, 以便尽可能将像素转换成符合预选分布的系数 。 我们的代码和模型将会被公诸于众 。