Execution monitoring is essential for robots to detect and respond to failures. Since it is impossible to enumerate all failures for a given task, we learn from successful executions of the task to detect visual anomalies during runtime. Our method learns to predict the motions that occur during the nominal execution of a task, including camera and robot body motion. A probabilistic U-Net architecture is used to learn to predict optical flow, and the robot's kinematics and 3D model are used to model camera and body motion. The errors between the observed and predicted motion are used to calculate an anomaly score. We evaluate our method on a dataset of a robot placing a book on a shelf, which includes anomalies such as falling books, camera occlusions, and robot disturbances. We find that modeling camera and body motion, in addition to the learning-based optical flow prediction, results in an improvement of the area under the receiver operating characteristic curve from 0.752 to 0.804, and the area under the precision-recall curve from 0.467 to 0.549.


翻译:执行监测对于机器人检测和应对失败至关重要。 由于无法为某项任务列出所有失败, 我们从成功执行探测运行期间视觉异常的任务中学习。 我们的方法是预测在名义执行任务期间发生的动作, 包括相机和机器人身体运动。 一个概率性的 U- Net 结构用来学习预测光学流, 机器人的动脉学和 3D 模型用来模拟相机和身体运动。 观察到的和预测的动作之间的差错被用来计算异常分。 我们评估了我们在机器人在架子上放置书籍的数据集上的方法, 其中包括掉下来的书籍、 相机隔离和机器人扰动等异常现象。 我们发现, 除了基于学习的光流预测外, 模拟相机和身体运动的结果是, 接收器操作特征曲线下的区域从0.752 7 到 0. 804, 以及精确召回曲线下的区域从 0. 467 到 0 549 。

0
下载
关闭预览

相关内容

在数据挖掘中,异常检测(英语:anomaly detection)对不符合预期模式或数据集中其他项目的项目、事件或观测值的识别。通常异常项目会转变成银行欺诈、结构缺陷、医疗问题、文本错误等类型的问题。异常也被称为离群值、新奇、噪声、偏差和例外。 特别是在检测滥用与网络入侵时,有趣性对象往往不是罕见对象,但却是超出预料的突发活动。这种模式不遵循通常统计定义中把异常点看作是罕见对象,于是许多异常检测方法(特别是无监督的方法)将对此类数据失效,除非进行了合适的聚集。相反,聚类分析算法可能可以检测出这些模式形成的微聚类。 有三大类异常检测方法。[1] 在假设数据集中大多数实例都是正常的前提下,无监督异常检测方法能通过寻找与其他数据最不匹配的实例来检测出未标记测试数据的异常。监督式异常检测方法需要一个已经被标记“正常”与“异常”的数据集,并涉及到训练分类器(与许多其他的统计分类问题的关键区别是异常检测的内在不均衡性)。半监督式异常检测方法根据一个给定的正常训练数据集创建一个表示正常行为的模型,然后检测由学习模型生成的测试实例的可能性。
专知会员服务
32+阅读 · 2021年9月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年9月27日
Arxiv
16+阅读 · 2021年3月2日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
6+阅读 · 2018年3月19日
Arxiv
3+阅读 · 2017年11月21日
VIP会员
相关VIP内容
专知会员服务
32+阅读 · 2021年9月16日
机器学习入门的经验与建议
专知会员服务
90+阅读 · 2019年10月10日
相关资讯
异常检测(Anomaly Detection)综述
极市平台
19+阅读 · 2020年10月24日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
无人机视觉挑战赛 | ICCV 2019 Workshop—VisDrone2019
PaperWeekly
7+阅读 · 2019年5月5日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
论文笔记之Feature Selective Networks for Object Detection
统计学习与视觉计算组
21+阅读 · 2018年7月26日
动手写机器学习算法:异常检测 Anomaly Detection
七月在线实验室
11+阅读 · 2017年12月8日
Capsule Networks解析
机器学习研究会
10+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2021年9月27日
Arxiv
16+阅读 · 2021年3月2日
Few-shot Scene-adaptive Anomaly Detection
Arxiv
8+阅读 · 2020年7月15日
Arxiv
6+阅读 · 2018年3月19日
Arxiv
3+阅读 · 2017年11月21日
Top
微信扫码咨询专知VIP会员