In this paper, we present a Distribution-Preserving Voice Anonymization technique, as our submission to the VoicePrivacy Challenge 2020. We observe that the challenge baseline system generates fake X-vectors which are very similar to each other, significantly more so than those extracted from organic speakers. This difference arises from averaging many X-vectors from a pool of speakers in the anonymization process, causing a loss of information. We propose a new method to generate fake X-vectors which overcomes these limitations by preserving the distributional properties of X-vectors and their intra-similarity. We use population data to learn the properties of the X-vector space, before fitting a generative model which we use to sample fake X-vectors. We show how this approach generates X-vectors that more closely follow the expected intra-similarity distribution of organic speaker X-vectors. Our method can be easily integrated with others as the anonymization component of the system and removes the need to distribute a pool of speakers to use during the anonymization. Our approach leads to an increase in EER of up to $19.4\%$ in males and $11.1\%$ in females in scenarios where enrollment and trial utterances are anonymized versus the baseline solution, demonstrating the diversity of our generated voices.
翻译:在本文中,我们作为提交2020年语音隐私挑战的呈文,介绍了一种传播-保留语音匿名技术。我们观察到,挑战基线系统生成了假X-矢量器,它们彼此非常相似,大大高于从有机发言者中提取的数据。这一差异产生于在匿名过程中从一组发言者中平均产生许多X-矢量器,造成信息丢失。我们提出了一种新的方法来生成假X-矢量器,通过保存X-矢量器的分布特性及其相似性来克服这些限制。我们利用人口数据来学习X-矢量空间的特性,然后安装一个基因化模型,我们用来取样假X-矢量器。我们展示了这种方法如何产生X-矢量器,更密切地跟踪有机发言者X-矢量器的预期不同分布,从而造成信息丢失。我们的方法可以很容易与其它方法结合,作为系统匿名部分,并消除在匿名期间需要分发的发言人库。我们的方法导致在使用X-矢量空间的特性特性之前,我们采用的方法将X-矢量空间的特性模型设计成一个特性模型,我们用来取样X-xxxx的样品模型。我们如何生成X-x-x-xxxxxx的模型模型的模型的模型的模型,从而展示了我们将展示了我们的性别-x-10-x-10-10-x-x-x-