In semi-supervised learning, virtual adversarial training (VAT) approach is one of the most attractive method due to its intuitional simplicity and powerful performances. VAT finds a classifier which is robust to data perturbation toward the adversarial direction. In this study, we provide a fundamental explanation why VAT works well in semi-supervised learning case and propose new techniques which are simple but powerful to improve the VAT method. Especially we employ the idea of Bad GAN approach, which utilizes bad samples distributed on complement of the support of the input data, without any additional deep generative architectures. We generate bad samples of high-quality by use of the adversarial training used in VAT and also give theoretical explanations why the adversarial training is good at both generating bad samples. An advantage of our proposed method is to achieve the competitive performances compared with other recent studies with much fewer computations. We demonstrate advantages our method by various experiments with well known benchmark image datasets.
翻译:在半监督的学习中,虚拟对抗性培训(VAT)方法因其直觉简单和强大的表现而是最有吸引力的方法之一。 VAT发现一个对数据干扰对抗性方向的分类器。在这个研究中,我们提供了一条基本的解释,说明为什么增值税在半监督的学习案例中效果良好,并提出了改进增值税方法的简单但有力的新技术。特别是我们采用了Bad GAN方法,它利用在支持输入数据时分发的不良样本,而没有额外的深层基因结构。我们通过使用VAT使用的对抗性培训生成了高质量的不良样本,并且从理论上解释了对抗性培训在产生不良样本方面都很好的原因。我们拟议方法的一个优势是取得与其他最近研究相比,计算得少得多的竞争性业绩。我们通过以众所周知的基准数据集进行的各种实验展示了我们的方法的优势。