The discovery of drug-target interactions (DTIs) is a very promising area of research with great potential. In general, the identification of reliable interactions among drugs and proteins can boost the development of effective pharmaceuticals. In this work, we leverage random walks and matrix factorization techniques towards DTI prediction. In particular, we take a multi-layered network perspective, where different layers correspond to different similarity metrics between drugs and targets. To fully take advantage of topology information captured in multiple views, we develop an optimization framework, called MDMF, for DTI prediction. The framework learns vector representations of drugs and targets that not only retain higher-order proximity across all hyper-layers and layer-specific local invariance, but also approximates the interactions with their inner product. Furthermore, we propose an ensemble method, called MDMF2A, which integrates two instantiations of the MDMF model that optimize surrogate losses of the area under the precision-recall curve (AUPR) and the area under the receiver operating characteristic curve (AUC), respectively. The empirical study on real-world DTI datasets shows that our method achieves significant improvement over current state-of-the-art approaches in four different settings. Moreover, the validation of highly ranked non-interacting pairs also demonstrates the potential of MDMF2A to discover novel DTIs.
翻译:发现药物目标相互作用(DTIs)是一个很有潜力的非常有希望的研究领域,一般来说,确定药物和蛋白质之间的可靠相互作用可以促进有效药品的发展。在这项工作中,我们利用随机行走和矩阵乘数技术来预测DTI。特别是,我们从多层次的网络角度出发,不同层次对应药物和目标之间的不同相似度指标。为了充分利用多重观点所捕捉的表层信息,我们为DTI预测开发了一个称为MDMMF的优化框架。这个框架学习了不仅在所有超层和特定层地方差异中保持较高距离的药物和具体目标的矢量表示方式和目标,不仅保持在所有超层和特定层地方差异中保持较高距离,而且还可以接近其内部产品之间的相互作用。此外,我们提出了一个称为MDMF2A的共性方法,该方法结合了MDMFMF模型的两个即时序,以优化精确回调曲线(AULUS)和接收器运行特征曲线(AUSC)下的地区的假定损失。关于现实世界DTI数据集的实验性研究显示,我们的方法也显著地展示了当前四级的诊断方法的升级。