We consider nonparametric estimation of the transition operator $P$ of a Markov chain and its transition density $p$ where the singular values of $P$ are assumed to decay exponentially fast. This is for instance the case for periodised, reversible multi-dimensional diffusion processes observed in low frequency. We investigate the performance of a spectral hard thresholded Galerkin-type estimator for $P$ and ${p}$, discarding most of the estimated singular triplets. The construction is based on smooth basis functions such as wavelets or B-splines. We show its statistical optimality by establishing matching minimax upper and lower bounds in $L^2$-loss. Particularly, the effect of the dimensionality $d$ of the state space on the nonparametric rate improves from $2d$ to $d$ compared to the case without singular value decay.
翻译:我们考虑对一个Markov链的过渡经营人P$及其过渡密度P$的非参数估算,假设单值$P$将迅速加速衰减。例如,对于在低频中观测到的周期性、可逆的多维扩散过程,就属于这种情况。我们调查一个光谱硬阈值的Galerkin型估测仪的性能,用P美元和${p}值来计算,抛弃了大多数估计的奇数三重。建筑基于平滑的基础功能,如波子或B-波条。我们通过将最小负值的上下界设为$L ⁇ 2美元的损失来显示其统计的最佳性。特别是,与没有单值衰减的情况相比,国家空间的维度对非参数率的影响从$d美元提高到$d美元。