Given a domain $\Omega \subset \mathbb{R}^n$, the de Rham complex of differential forms arises naturally in the study of problems in electromagnetism and fluid mechanics defined on $\Omega$, and its discretization helps build stable numerical methods for such problems. For constructing such stable methods, one critical requirement is ensuring that the discrete subcomplex is cohomologically equivalent to the continuous complex. When $\Omega$ is a hypercube, we thus require that the discrete subcomplex be exact. Focusing on such $\Omega$, we theoretically analyze the discrete de Rham complex built from hierarchical B-spline differential forms, i.e., the discrete differential forms are smooth splines and support adaptive refinements - these properties are key to enabling accurate and efficient numerical simulations. We provide locally-verifiable sufficient conditions that ensure that the discrete spline complex is exact. Numerical tests are presented to support the theoretical results, and the examples discussed include complexes that satisfy our prescribed conditions as well as those that violate them.


翻译:考虑到一个域 $\ Omega \ subset\ mathb{R ⁇ n$, 不同形式的德 Rham 复合体自然地出现在对以美元定义的电子磁力学和流体力学问题的研究中, 其离散性有助于为这类问题建立稳定的数值方法。 对于构建这样的稳定方法, 一个关键要求是确保离散的子复合体与连续的复合体具有同等的共振性。 当 $\ Omega$ 是超导体时, 我们因此要求离散的子复合体精确。 聚焦于这类$\ Omega$, 我们理论上分析从B- spline 差异表上构建的离散性拉姆复合体, 即, 离散性差异表是光滑的样条和支持适应性改进。 这些特性是允许准确和高效的数值模拟的关键。 我们提供了可本地核查的足够条件, 以确保离散的螺旋复合体是精确的。 我们提出数字测试以支持理论结果, 讨论的例子包括满足我们规定的条件的复杂性以及违反这些条件的复杂性。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年10月19日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员