Given a domain $\Omega \subset \mathbb{R}^n$, the de Rham complex of differential forms arises naturally in the study of problems in electromagnetism and fluid mechanics defined on $\Omega$, and its discretization helps build stable numerical methods for such problems. For constructing such stable methods, one critical requirement is ensuring that the discrete subcomplex is cohomologically equivalent to the continuous complex. When $\Omega$ is a hypercube, we thus require that the discrete subcomplex be exact. Focusing on such $\Omega$, we theoretically analyze the discrete de Rham complex built from hierarchical B-spline differential forms, i.e., the discrete differential forms are smooth splines and support adaptive refinements - these properties are key to enabling accurate and efficient numerical simulations. We provide locally-verifiable sufficient conditions that ensure that the discrete spline complex is exact. Numerical tests are presented to support the theoretical results, and the examples discussed include complexes that satisfy our prescribed conditions as well as those that violate them.
翻译:考虑到一个域 $\ Omega \ subset\ mathb{R ⁇ n$, 不同形式的德 Rham 复合体自然地出现在对以美元定义的电子磁力学和流体力学问题的研究中, 其离散性有助于为这类问题建立稳定的数值方法。 对于构建这样的稳定方法, 一个关键要求是确保离散的子复合体与连续的复合体具有同等的共振性。 当 $\ Omega$ 是超导体时, 我们因此要求离散的子复合体精确。 聚焦于这类$\ Omega$, 我们理论上分析从B- spline 差异表上构建的离散性拉姆复合体, 即, 离散性差异表是光滑的样条和支持适应性改进。 这些特性是允许准确和高效的数值模拟的关键。 我们提供了可本地核查的足够条件, 以确保离散的螺旋复合体是精确的。 我们提出数字测试以支持理论结果, 讨论的例子包括满足我们规定的条件的复杂性以及违反这些条件的复杂性。