We revisit the classic task of finding the shortest tour of $n$ points in $d$-dimensional Euclidean space, for any fixed constant $d \geq 2$. We determine the optimal dependence on $\varepsilon$ in the running time of an algorithm that computes a $(1+\varepsilon)$-approximate tour, under a plausible assumption. Specifically, we give an algorithm that runs in $2^{O(1/\varepsilon^{d-1})} n\log n$ time. This improves the previously smallest dependence on $\varepsilon$ in the running time $(1/\varepsilon)^{O(1/\varepsilon^{d-1})}n \log n$ of the algorithm by Rao and Smith (STOC 1998). We also show that a $2^{o(1/\varepsilon^{d-1})}\mathrm{poly}(n)$ algorithm would violate the Gap-Exponential Time Hypothesis (Gap-ETH). Our new algorithm builds upon the celebrated quadtree-based methods initially proposed by Arora (J. ACM 1998), but it adds a new idea that we call sparsity-sensitive patching. On a high level this lets the granularity with which we simplify the tour depend on how sparse it is locally. We demonstrate that our technique extends to other problems, by showing that for Steiner Tree and Rectilinear Steiner Tree it yields the same running time. We complement our results with a matching Gap-ETH lower bound for Rectilinear Steiner Tree.
翻译:我们重新审视了一个典型的任务,即找到最短的以美元为单位的斯泰里纳(nlog n$)时间,找到最短的以美元为单位的斯泰里纳(美元),任何固定的固定不变值美元=2美元。我们确定在计算Rao和Smith(STOC,1998年)的算法运行时间里,对美元(1 ⁇ varepsilon)的近距离巡航($1 ⁇ varepsilon)的美元的最佳依赖度。我们还表明,一个以$O(1/\varepslon)为单位的算法运行时间里,以美元计算最短的斯泰里纳(美元)为单位的斯泰里塔尼亚纳(n)将违反Gap-Expential y- ypothesis(Gap-ETH) 。我们的新算法建立在拉奥里萨利诺(l) 亚诺里纳里拉(1) 的算里纳里纳里拉(l) 的算上, 一种高层次的比亚里纳里纳里拉(O) 直里拉(O) 直里拉(O) 的算上, 我们的算里程) 的算上, 直里程的计算方法是一个新的一个我们所谓的“我们所谓的 直调的 直调。