A Walsh zero space (WZ space) for $f:F_{2^n}\rightarrow F_{2^n}$ is an $n$-dimensional vector subspace of $F_{2^n}\times F_{2^n}$ whose all nonzero elements are Walsh zeros of $f$. We provide several theoretical and computer-free constructions of WZ spaces for Gold APN functions $f(x)=x^{2^i+1}$ on $F_{2^n}$ where $n$ is odd and $\gcd(i,n)=1$. We also provide several constructions of trivially intersecting pairs of such spaces. We illustrate applications of our constructions that include constructing APN permutations that are CCZ equivalent to $f$ but not extended affine equivalent to $f$ or its compositional inverse.
翻译:沃尔什零空间(WZ space) $f:F ⁇ 2 ⁇ nrightrow F ⁇ 2 ⁇ n} 美元是一美元的维矢量子空间,其所有非零元素均为零,零为零,零为美元。我们提供若干理论和计算机上建造WZ空间,用于黄金APN函数 $f(x)=x ⁇ 2 ⁇ i+1}$F ⁇ 2 ⁇ n} 美元,其中美元为奇数,美元为1美元。我们还提供几套此类空间的细小的交叉配对建筑。我们举例说明了我们的建筑应用,包括建造相当于美元,但不延伸成折成折成美元或其构成反面的APN配置。