In this work, we present Facial Identity Controllable GAN (FICGAN) for not only generating high-quality de-identified face images with ensured privacy protection, but also detailed controllability on attribute preservation for enhanced data utility. We tackle the less-explored yet desired functionality in face de-identification based on the two factors. First, we focus on the challenging issue to obtain a high level of privacy protection in the de-identification task while uncompromising the image quality. Second, we analyze the facial attributes related to identity and non-identity and explore the trade-off between the degree of face de-identification and preservation of the source attributes for enhanced data utility. Based on the analysis, we develop Facial Identity Controllable GAN (FICGAN), an autoencoder-based conditional generative model that learns to disentangle the identity attributes from non-identity attributes on a face image. By applying the manifold k-same algorithm to satisfy k-anonymity for strengthened security, our method achieves enhanced privacy protection in de-identified face images. Numerous experiments demonstrate that our model outperforms others in various scenarios of face de-identification.


翻译:在这项工作中,我们不仅为制作高质量的非身份可控GAN(FICGAN)提供高质量的非身份可控GAN(FICGAN)图像,确保隐私保护,而且为增强数据效用而对属性保护进行详细控制。我们根据两个因素,解决了在面部可控方面探索较少但理想的功能问题。首先,我们集中关注一个具有挑战性的问题,以便在取消身份的任务中获得高度的隐私保护,同时不降低图像质量。第二,我们分析与身份和非身份有关的面部特征,并探讨为增强数据效用而面部可辨别和保存源属性的程度之间的平衡。我们根据分析,开发了不透明身份可控GAN(ICCTGAN),这是一个基于自动编码的有条件的基因化模型,它学会将身份属性与非身份特征特征在面部图像上的分解。我们采用多重k-same算法满足k-onnicity以加强安全性,我们的方法在面部图像中实现了加强隐私保护。许多实验表明,我们的模型在面部位图像中超越了其他特征。

0
下载
关闭预览

相关内容

【CVPR2021】GAN人脸预训练模型
专知会员服务
23+阅读 · 2021年4月10日
生成对抗网络GAN在各领域应用研究进展(中文版),37页pdf
专知会员服务
150+阅读 · 2020年12月30日
数据科学导论,54页ppt,Introduction to Data Science
专知会员服务
41+阅读 · 2020年7月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
74+阅读 · 2020年4月24日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年1月7日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
Arxiv
5+阅读 · 2018年5月1日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员