Dynamic texture (DT) exhibits statistical stationarity in the spatial domain and stochastic repetitiveness in the temporal dimension, indicating that different frames of DT possess a high similarity correlation that is critical prior knowledge. However, existing methods cannot effectively learn a promising synthesis model for high-dimensional DT from a small number of training data. In this paper, we propose a novel DT synthesis method, which makes full use of similarity prior knowledge to address this issue. Our method bases on the proposed kernel similarity embedding, which not only can mitigate the high-dimensionality and small sample issues, but also has the advantage of modeling nonlinear feature relationship. Specifically, we first raise two hypotheses that are essential for DT model to generate new frames using similarity correlation. Then, we integrate kernel learning and extreme learning machine into a unified synthesis model to learn kernel similarity embedding for representing DT. Extensive experiments on DT videos collected from the internet and two benchmark datasets, i.e., Gatech Graphcut Textures and Dyntex, demonstrate that the learned kernel similarity embedding can effectively exhibit the discriminative representation for DT. Accordingly, our method is capable of preserving the long-term temporal continuity of the synthesized DT sequences with excellent sustainability and generalization. Meanwhile, it effectively generates realistic DT videos with fast speed and low computation, compared with the state-of-the-art methods. The code and more synthesis videos are available at our project page https://shiming-chen.github.io/Similarity-page/Similarit.html.


翻译:动态纹理(DT) 显示空间域的统计性和时间层面的重复性,表明不同的DT框架具有高度相似性相关性,这是以前的关键知识。然而,现有方法无法有效地从少量的培训数据中学习高维DT的有希望的综合模型。在本文件中,我们提出一个新的DT合成方法,充分利用先前知识的相似性来解决这一问题。我们在拟议的内核嵌入中的方法基础不仅能够减轻高维度和小样本问题,而且具有建模非线性视频关系的优势。具体地说,我们首先提出对DT模式至关重要的两个假设,以便利用相似性相关数据生成新的框架。然后,我们将内核学习和极端学习机纳入一个统一的合成模型,以学习在代表DT的内核嵌入的相似性。我们从互联网和两个现实化数据集中收集的DT视频的广泛实验,即Gatech Statech Stregcculture Streutures and Dyntex, 展示了我们所学的低基内径性非线性视频的模型, 并有效保持了我们具有可持续性的Sdeal-deal-deal develilation delismal lading Scild Sp 和Sdestreptionaldeal delviews ex 。我们可有效展示了常规的实验室-delviductionalalalal 和持续性平流法。可以有效地展示了我们总制成的系统,可以有效地展示和制成的实验室-deal-delismlation-deal-develild 。可以有效地展示了常规化、制成。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
13+阅读 · 2019年11月14日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Learning Embedding Adaptation for Few-Shot Learning
Arxiv
16+阅读 · 2018年12月10日
VIP会员
相关VIP内容
专知会员服务
123+阅读 · 2020年9月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员