Pathloss prediction is an essential component of wireless network planning. While ray-tracing based methods have been successfully used for many years, they require significant computational effort that may become prohibitive with the increased network densification and/or use of higher frequencies in 5G/B5G (beyond 5 G) systems. In this paper, we propose and evaluate a data-driven and model-free pathloss prediction method, dubbed PMNet. This method uses a supervised learning approach: training a neural network (NN) with a limited amount of ray tracing (or channel measurement) data and map data and then predicting the pathloss over location with no ray tracing data with a high level of accuracy. Our proposed pathloss map prediction-oriented NN architecture, which is empowered by state-of-the-art computer vision techniques, outperforms other architectures that have been previously proposed (e.g., UNet, RadioUNet) in terms of accuracy while showing generalization capability. Moreover, PMNet trained on a 4-fold smaller dataset surpasses the other baselines (trained on a 4-fold larger dataset), corroborating the potential of PMNet.
翻译:光轨测距法是无线网络规划的一个基本组成部分。 光轨测距法多年来已经成功使用,但随着网络密度和/或使用5G/B5G(5G)系统(高于5G)高频率的增加,这些方法可能需要大量计算努力,可能变得令人望而却步。 在本文中,我们提议和评价一种数据驱动和无模型的无路标测距法,称为PMNet。 这种方法使用一种有监督的学习方法:培训一个神经网络(NNN),其射线追踪(或频道测量)数据和地图数据数量有限,然后预测位置上的路径损耗损,而没有光追踪数据,而且精确度很高。 我们拟议的路径损图图-面向NNNN的预测结构受到最新计算机视觉技术的增强,在准确性方面优于先前提议的其他结构(例如UNet、RadioUNet),同时显示通用能力。此外,PMNet的四倍小数据集培训超过了其他基线(在四倍大数据集上受训),证实了MNet的潜力。