Many ontologies, i.e., Description Logic (DL) knowledge bases, have been developed to provide rich knowledge about various domains, and a lot of them are based on ALC, i.e., a prototypical and expressive DL, or its extensions. The main task that explores ALC ontologies is to compute semantic entailment. Symbolic approaches can guarantee sound and complete semantic entailment but are sensitive to inconsistency and missing information. To this end, we propose FALCON, a Fuzzy ALC Ontology Neural reasoner. FALCON uses fuzzy logic operators to generate single model structures for arbitrary ALC ontologies, and uses multiple model structures to compute semantic entailments. Theoretical results demonstrate that FALCON is guaranteed to be a sound and complete algorithm for computing semantic entailments over ALC ontologies. Experimental results show that FALCON enables not only approximate reasoning (reasoning over incomplete ontologies) and paraconsistent reasoning (reasoning over inconsistent ontologies), but also improves machine learning in the biomedical domain by incorporating background knowledge from ALC ontologies.
翻译:许多理论基础,即描述逻辑(DL)知识基础,已经发展起来,以提供关于不同领域的丰富知识,其中很多知识基础都以ALC为基础,即原型和表达式DL,或其扩展。研究ALC理论的主要任务是计算语义内涵。符号方法可以保证合理和完整的语义内涵,但对不一致和缺失的信息敏感。为此,我们提议FALCON,一个模糊的ALCON,一个模糊的ALCON神经神经神经理性解释器。FALCON使用模糊逻辑操作器为任意的ALC理论生成单一模型结构,并使用多种模型结构来计算语义内涵。理论结果表明,FALCON保证对计算LC理论内涵的语义内涵进行正确和完整的算法。实验结果显示,FALCON不仅能够进行大概推理(为不完全的理论性)和分解性推理(为不一致的词义),而且还可以改进生物医学领域的机器学习,通过背景纳入LC的LC知识。