Quantifying uncertainty using confidence regions is a central goal of statistical inference. Despite this, methodologies for confidence bands in Functional Data Analysis are still underdeveloped compared to estimation and hypothesis testing. In this work, we present a new methodology for constructing simultaneous confidence bands for functional parameter estimates. Our bands possess a number of striking qualities: (1) they have a nearly closed-form expression and thus are fast to compute, (2) they can be constructed adaptively according to a desired criterion, where we focus on the fairness constraint of false positive rate balance across partitions of the bands' domain which facilitates both global and local interpretations, and (3) they do not require an estimate of the full covariance function and thus can be used in the case of fragmentary functional data. Simulations show the excellent finite-sample behavior of our bands in comparison to existing alternatives. The practical use of our bands is demonstrated in two case studies on sports biomechanics and fragmentary growth curves.
翻译:利用信任区域量化不确定性是统计推断的中心目标。尽管如此,功能数据分析信任带的方法与估计和假设测试相比仍然不够完善。在这项工作中,我们提出了为功能参数估计同时构建信任带的新方法。我们的频带具有一些惊人的特性:(1) 它们具有近乎封闭的表达形式,因此可以快速地计算,(2) 它们可以按照理想的标准进行适应性构建,我们注重于各频带域间间间间不实正率平衡的公平性限制,这有利于全球和地方的解释,(3) 它们并不要求估计全部共变功能,因此可用于碎片功能数据。模拟表明与现有替代方法相比,我们的频带的极佳的有限抽样行为。关于体育生物机械学和零散增长曲线的两个案例研究表明,我们频带的实际用途。