Having good knowledge of terrain information is essential for improving the performance of various downstream tasks on complex terrains, especially for the locomotion and navigation of legged robots. We present a novel framework for neural urban terrain reconstruction with uncertainty estimations. It generates dense robot-centric elevation maps online from sparse LiDAR observations. We design a novel pre-processing and point features representation approach that ensures high robustness and computational efficiency when integrating multiple point cloud frames. A Bayesian-GAN model then recovers the detailed terrain structures while simultaneously providing the pixel-wise reconstruction uncertainty. We evaluate the proposed pipeline through extensive simulation and real-world experiments. It demonstrates efficient terrain reconstruction with high quality and real-time performance on a mobile platform, which further benefits the downstream tasks of legged robots. (See https://kin-zhang.github.io/ndem/ for more details.)
翻译:具备良好的地形信息知识对于改进复杂地形下游各项任务,特别是对于腿式机器人的移动和导航而言,对于改进复杂地形下游任务的执行至关重要。我们提出了一个具有不确定性的神经城市地形重建新框架。我们从分散的LiDAR观测中生成了密度高的机器人中心高地图。我们设计了一种新的预处理和点表征方法,确保在综合多点云框架时确保高度稳健和计算效率。Bayesian-GAN模型随后恢复了详细的地形结构,同时提供了像素智慧重建的不确定性。我们通过广泛的模拟和现实世界实验评估了拟议的管道。它展示了高效的地形重建,在移动平台上展示了高质量的实时性能,从而进一步有利于锯式机器人的下游任务。 (详情见https://kin-zhang.github.io/ndeem/。)