In reinforcement learning, we encode the potential behaviors of an agent interacting with an environment into an infinite set of policies, the policy space, typically represented by a family of parametric functions. Dealing with such a policy space is a hefty challenge, which often causes sample and computation inefficiencies. However, we argue that a limited number of policies are actually relevant when we also account for the structure of the environment and of the policy parameterization, as many of them would induce very similar interactions, i.e., state-action distributions. In this paper, we seek for a reward-free compression of the policy space into a finite set of representative policies, such that, given any policy $\pi$, the minimum R\'enyi divergence between the state-action distributions of the representative policies and the state-action distribution of $\pi$ is bounded. We show that this compression of the policy space can be formulated as a set cover problem, and it is inherently NP-hard. Nonetheless, we propose a game-theoretic reformulation for which a locally optimal solution can be efficiently found by iteratively stretching the compressed space to cover an adversarial policy. Finally, we provide an empirical evaluation to illustrate the compression procedure in simple domains, and its ripple effects in reinforcement learning.


翻译:在强化学习中,我们把与环境发生相互作用的代理人的潜在行为编成一套无限的政策,即政策空间,通常由一组参数功能所代表。处理这样一个政策空间是一项艰巨的挑战,往往导致抽样和计算效率低下。然而,我们争辩说,当我们还考虑到环境结构和政策参数化的结构时,为数有限的政策实际上具有相关性,因为其中许多政策会引发非常相似的互动,即国家行动分布。在本文中,我们寻求将政策空间无酬压缩成一套有限的有代表性的政策,例如,考虑到任何政策$\pi$,代表政策的国家行动分布与美元的国家行动分配之间的最小R\'enyi差异是捆绑在一起的。我们表明,这种政策空间的压缩可以作为一个固定的覆盖问题来形成,而且它本身是硬的。然而,我们提议一种游戏理论重新配方,通过迭接压缩空间以覆盖简单的对抗性政策的强化作用来有效地找到一种当地最佳解决办法。最后,我们提供了一种实验程序,以模拟形式来说明其强化的磁性。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2022年2月24日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员