热门内容

To address the sparsity and cold start problem of collaborative filtering, researchers usually make use of side information, such as social networks or item attributes, to improve recommendation performance. This paper considers the knowledge graph as the source of side information. To address the limitations of existing embedding-based and path-based methods for knowledge-graph-aware recommendation, we propose Ripple Network, an end-to-end framework that naturally incorporates the knowledge graph into recommender systems. Similar to actual ripples propagating on the surface of water, Ripple Network stimulates the propagation of user preferences over the set of knowledge entities by automatically and iteratively extending a user's potential interests along links in the knowledge graph. The multiple "ripples" activated by a user's historically clicked items are thus superposed to form the preference distribution of the user with respect to a candidate item, which could be used for predicting the final clicking probability. Through extensive experiments on real-world datasets, we demonstrate that Ripple Network achieves substantial gains in a variety of scenarios, including movie, book and news recommendation, over several state-of-the-art baselines.

0
14
下载
预览

最新内容

During the development of a software project, developers often need to upgrade third-party libraries (TPLs), aiming to keep their code up-to-date with the newest functionalities offered by the used libraries. In most cases, upgrading used TPLs is a complex and error-prone activity that must be carefully carried out to limit the ripple effects on the software project that depends on the libraries being upgraded. In this paper, we propose EvoPlan as a novel approach to the recommendation of different upgrade plans given a pair of library-version as input. In particular, among the different paths that can be possibly followed to upgrade the current library version to the desired updated one, EvoPlan is able to suggest the plan that can potentially minimize the efforts being needed to migrate the code of the clients from the library's current release to the target one. The approach has been evaluated on a curated dataset using conventional metrics used in Information Retrieval, i.e., precision, recall, and F-measure. The experimental results show that EvoPlan obtains an encouraging prediction performance considering two different criteria in the plan specification, i.e., the popularity of migration paths and the number of open and closed issues in GitHub for those projects that have already followed the recommended migration paths.

0
0
下载
预览

最新论文

During the development of a software project, developers often need to upgrade third-party libraries (TPLs), aiming to keep their code up-to-date with the newest functionalities offered by the used libraries. In most cases, upgrading used TPLs is a complex and error-prone activity that must be carefully carried out to limit the ripple effects on the software project that depends on the libraries being upgraded. In this paper, we propose EvoPlan as a novel approach to the recommendation of different upgrade plans given a pair of library-version as input. In particular, among the different paths that can be possibly followed to upgrade the current library version to the desired updated one, EvoPlan is able to suggest the plan that can potentially minimize the efforts being needed to migrate the code of the clients from the library's current release to the target one. The approach has been evaluated on a curated dataset using conventional metrics used in Information Retrieval, i.e., precision, recall, and F-measure. The experimental results show that EvoPlan obtains an encouraging prediction performance considering two different criteria in the plan specification, i.e., the popularity of migration paths and the number of open and closed issues in GitHub for those projects that have already followed the recommended migration paths.

0
0
下载
预览
Top
微信扫码咨询专知VIP会员