We consider the online hitting set problem for the range space $\Sigma=(\cal X,\cal R)$, where the point set $\cal X$ is known beforehand, but the set $\cal R$ of geometric objects is not known in advance. Here, objects from $\cal R$ arrive one by one. The objective of the problem is to maintain a hitting set of the minimum cardinality by taking irrevocable decisions. In this paper, we consider the problem when objects are unit balls or unit hypercubes in $\mathbb{R}^d$, and the points from $\mathbb{Z}^d$ are used for hitting them. First, we address the case when objects are unit intervals in $\mathbb{R}$ and present an optimal deterministic algorithm with a competitive ratio of~$2$. Then, we consider the case when objects are unit balls. For hitting unit balls in $\mathbb{R}^2$ and $\mathbb{R}^3$, we present $4$ and $14$-competitive deterministic algorithms, respectively. On the other hand, for hitting unit balls in $\mathbb{R}^d$, we propose an $O(d^4)$-competitive deterministic algorithm, and we demonstrate that}, for $d<4$, the competitive ratio of any deterministic algorithm is at least $d+1$. In the end, we explore the case where objects are unit hypercubes. For hitting unit hypercubes in $\mathbb{R}^2$ and $\mathbb{R}^3$, we obtain $4$ and $8$-competitive deterministic algorithms, respectively. For hitting unit hypercubes in $\mathbb{R}^d$ ($d\geq 3$), we present an $O(d^2)$-competitive randomized algorithm. Furthermore, we prove that the competitive ratio of any deterministic algorithm for the problem is at least $d+1$ for any $d\in\mathbb{N}$.


翻译:暂无翻译

0
下载
关闭预览

相关内容

简称 哈工大,创建于1920年,是C9联盟成员之一,国内工科顶尖高校。1999年成为首批九所985工程院校之一,校训是“规格严格,功夫到家”。
WWW 2024 | GraphTranslator: 将图模型对齐大语言模型
专知会员服务
24+阅读 · 2024年3月25日
专知会员服务
33+阅读 · 2021年3月7日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
ExBert — 可视化分析Transformer学到的表示
专知会员服务
32+阅读 · 2019年10月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
16+阅读 · 2022年5月17日
Arxiv
18+阅读 · 2021年3月16日
Arxiv
17+阅读 · 2021年2月15日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
可解释AI(XAI)工具集—DrWhy
专知
25+阅读 · 2019年6月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
CNN 反向传播算法推导
统计学习与视觉计算组
30+阅读 · 2017年12月29日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
Layer Normalization原理及其TensorFlow实现
深度学习每日摘要
32+阅读 · 2017年6月17日
From Softmax to Sparsemax-ICML16(1)
KingsGarden
73+阅读 · 2016年11月26日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员