This paper is concerned with an approximation scheme for rate-independent systems governed by a non-smooth dissipation and a possibly non-convex energy functional. The scheme is based on the local minimization scheme introduced in [EM06], but relies on local stationarity of the underlying minimization problem. Under the assumption of Mosco-convergence for the dissipation functional, we show that accumulation points exist and are so-called parametrized solutions of the rate-independent system. In particular, this guarantees the existence of parametrized solutions for a rather general setting. Afterwards, we apply the scheme to a model for the evolution of damage.
翻译:本文涉及受非移动分散和可能非节能能源功能制约的无比率独立系统的近似计划。该计划以[EM06]中引入的当地最小化计划为基础,但依赖于潜在最小化问题的当地固定性。根据Mosco对消散功能的一致假设,我们表明,积累点存在,并且是所谓 " 零位独立系统 " 的平衡化解决方案。特别是,这保证了在相当一般的环境下存在平衡化解决方案。随后,我们将该计划应用于损害演变模型。