This work presents a suitable mathematical analysis to understand the properties of convergence and bounded variation of a new { fully discrete locally conservative} Lagrangian--Eulerian {explicit} numerical scheme to the entropy solution in the sense of Kruzhkov via weak asymptotic method. We also make use of the weak asymptotic method to connect the theoretical developments with the computational approach within the practical framework of a solid numerical analysis. This method also serves to address the issue of notions of solutions, and its resulting algorithms have been proven to be effective to study nonlinear wave formations and rarefaction interactions in intricate applications. The weak asymptotic solutions we compute in this study with our novel Lagrangian--Eulerian framework are shown to coincide with classical solutions and Kruzhkov entropy solutions in the scalar case. Moreover, we present and discuss significant computational aspects by means of numerical experiments related to nontrivial problems: a nonlocal traffic model, the $2 \times 2$ symmetric Keyfitz--Kranzer system, and numerical studies via Wasserstein distance to explain shock interaction with the fundamental inviscid Burgers' model for fluids. Therefore, the proposed weak asymptotic analysis, when applied to the Lagrangian--Eulerian framework, fits in properly with the classical theory while optimizing the mathematical computations for the construction of new accurate numerical schemes.


翻译:这项工作提供了一种适当的数学分析, 以了解新的 { 完全离散的当地保守 } Lagrangian- Eulelian {explit} 的趋同性和约束性变异性, 以了解新的 { 完全离散的当地保守} Lagrangian- Eulelian {explit} 数字制成的特性。 我们还利用弱弱的无线化方法, 将理论发展与计算方法联系起来, 在实实在在的数值分析的实用框架内, 这个方法还有助于解决解决方案的概念问题, 其产生的算法已证明有效地研究非线性波形成和复杂应用中稀有的相互作用。 我们在本项研究中与我们的新Lagrangian- Eulerian 的Lagrangang- Eulerian 框架拼写得软弱的无线性解决方案。 此外, 我们介绍和讨论重要的计算方面, 通过与非三角问题相关的数字实验: 非本地交通模式, 其结果计算方法的2\ time 2 $ 2, 用于研究非线性 Keyfitz- kranzervizer 和 的稀变精度 系统 。

0
下载
关闭预览

相关内容

IFIP TC13 Conference on Human-Computer Interaction是人机交互领域的研究者和实践者展示其工作的重要平台。多年来,这些会议吸引了来自几个国家和文化的研究人员。官网链接:http://interact2019.org/
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Arxiv
0+阅读 · 2021年8月12日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
48+阅读 · 2020年7月4日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【干货书】数值计算C编程,319页pdf,Numerical C
专知会员服务
67+阅读 · 2020年4月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】树莓派/OpenCV/dlib人脸定位/瞌睡检测
机器学习研究会
9+阅读 · 2017年10月24日
Top
微信扫码咨询专知VIP会员