We prove mean-square convergence of a novel numerical method, the tamed-splitting method, for a generalized Ait-Sahalia interest rate model. The method is based on a Lamperti transform, splitting and applying a tamed numerical method for the nonlinearity. The main difficulty in the analysis is caused by the non-globally Lipschitz drift coefficients of the model. We examine the existence, uniqueness of the solution and boundedness of moments for the transformed SDE.We then prove bounded moments and inverses moments for the numerical approximation. The tamed-splitting method is a hybrid method in the sense that a backstop method is invoked to prevent solutions from overshooting zero and becoming negative. We successfully recover the mean-square convergence rate of order one for the tamed-splitting method. In addition we prove that the probability of ever needing the backstop method to prevent a negative value can be made arbitrarily small. In our numerical experiments we compare to other numerical methods in the literature for realistic parameter values.
翻译:我们证明,新数字方法,即礼节分解法,在通用的Ait-Sahalia利率模式中,我们以平庸分解法为基础,以兰佩蒂变换、分解和对非线性采用平坦数字方法为基础。分析的主要困难在于模型的非全球利普西茨漂移系数。我们审视了解决办法的存在、独特性和转变的SDE时空的界限。我们随后证明了数字近似时空的界限和反向时间。在数字近似时段中,技术分解法是一种混合方法,即使用后站方法防止解决方案过度破除零和变成负值。我们成功地恢复了用于礼节分法的一号单的平均平方趋同率。此外,我们证明,永远需要后站方法防止负值的可能性是任意的。在数字实验中,我们比较了文献中其他数字方法的实际参数值。