The learning-to-rank problem aims at ranking items to maximize exposure of those most relevant to a user query. A desirable property of such ranking systems is to guarantee some notion of fairness among specified item groups. While fairness has recently been considered in the context of learning-to-rank systems, current methods cannot provide guarantees on the fairness of the proposed ranking policies. This paper addresses this gap and introduces Smart Predict and Optimize for Fair Ranking (SPOFR), an integrated optimization and learning framework for fairness-constrained learning to rank. The end-to-end SPOFR framework includes a constrained optimization sub-model and produces ranking policies that are guaranteed to satisfy fairness constraints while allowing for fine control of the fairness-utility tradeoff. SPOFR is shown to significantly improve current state-of-the-art fair learning-to-rank systems with respect to established performance metrics.
翻译:排名问题旨在排列项目,最大限度地让与用户查询关系最密切的人接触。这类排名制度的一个可取之处是保证特定项目类别之间的某种公平概念。虽然最近已在学习到排名制度的范围内审议了公平问题,但目前的方法无法为拟议的排名政策的公平性提供保障。本文件讨论了这一差距,并介绍了公平排名的智能预测和优化(SPOFR),这是一个综合优化和学习框架,用于公平、约束和排序。端到端的SPOFR框架包括一个有限的优化子模式,并制定了一些排序政策,保证满足公平性限制,同时允许对公平-利用率权衡进行细微的控制。SPOFR显示,在既定的绩效衡量方面,当前最先进的公平学习到排名制度有了很大的改进。