There is an extensive literature in social choice theory studying the consequences of weakening the assumptions of Arrow's Impossibility Theorem. Much of this literature suggests that there is no escape from Arrow-style impossibility theorems unless one drastically violates the Independence of Irrelevant Alternatives (IIA). In this paper, we present a more positive outlook. We propose a model of comparing candidates in elections, which we call the Advantage-Standard (AS) model. The requirement that a collective choice rule (CCR) be rationalizable by the AS model is in the spirit of but weaker than IIA; yet it is stronger than what is known in the literature as weak IIA (two profiles alike on x, y cannot have opposite strict social preferences on x and y). In addition to motivating violations of IIA, the AS model makes intelligible violations of another Arrovian assumption: the negative transitivity of the strict social preference relation P. While previous literature shows that only weakening IIA to weak IIA or only weakening negative transitivity of P to acyclicity still leads to impossibility theorems, we show that jointly weakening IIA to AS rationalizability and weakening negative transitivity of P leads to no such impossibility theorems. Indeed, we show that several appealing CCRs are AS rationalizable, including even transitive CCRs.


翻译:社会选择理论中有大量文献,研究削弱箭头不可推理理论假设的后果。许多文献都表明,除非一个人严重违反了与非相关替代方法的独立(IIA),否则无法摆脱箭头式不可能的理论。在本文中,我们提出了一个比较选举候选人的模式,我们称之为优惠-标准(AS)模式,我们提出了在选举中比较候选人的模式,我们称之为优惠-标准(AS)模式的消极过渡性。AS模式要求集体选择规则(CCCR)合理化,这符合IIA的精神,但弱于IIA;然而,它比文献中被称为弱的IA更强大,除非两者在x,不能对x和y产生相反的严格社会偏好。除了鼓励违反IIA之外,A模型还提出了一种难以理解的违反Arrovian假设:严格社会偏好P的消极过渡性。虽然以前的文献表明,只有削弱IIA至弱的IIA,或只是削弱P至周期的消极过渡性,才能导致不可能的理论,但我们共同削弱IIA的过渡性,包括CA的合理化,从而显示,我们无法使CA的过渡变得具有否定性。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
88+阅读 · 2021年6月29日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
专知会员服务
52+阅读 · 2020年9月7日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
78+阅读 · 2019年10月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年10月3日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关VIP内容
专知会员服务
88+阅读 · 2021年6月29日
【MIT干货书】机器学习算法视角,126页pdf
专知会员服务
77+阅读 · 2021年1月25日
专知会员服务
52+阅读 · 2020年9月7日
[综述]基于深度学习的开放领域对话系统研究综述
专知会员服务
78+阅读 · 2019年10月12日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员