Multi-aspect user preferences are attracting wider attention in recommender systems, as they enable more detailed understanding of users' evaluations of items. Previous studies show that incorporating multi-aspect preferences can greatly improve the performance and explainability of recommendation. However, as recommendation is essentially a ranking problem, there is no principled solution for ranking multiple aspects collectively to enhance the recommendation. In this work, we derive a multi-aspect ranking criterion. To maintain the dependency among different aspects, we propose to use a vectorized representation of multi-aspect ratings and develop a probabilistic multivariate tensor factorization framework (PMTF). The framework naturally leads to a probabilistic multi-aspect ranking criterion, which generalizes the single-aspect ranking to a multivariate fashion. Experiment results on a large multi-aspect review rating dataset confirmed the effectiveness of our solution.
翻译:多层用户偏好正在建议者系统中引起更广泛的注意,因为这些偏好有助于更详细地了解用户对项目的评价。以前的研究表明,纳入多层偏好可以极大地改善建议的绩效和解释性。然而,由于建议基本上是一个排名问题,因此没有原则性的解决办法可以将多个方面合并排列,以加强建议。在这项工作中,我们得出一个多层排序标准。为了保持不同方面的依赖性,我们提议使用多层评级的矢量化代表制,并开发一个概率性多变量指数化框架(PMTF)。该框架自然导致一个概率性多层排序标准,将单层排序概括为多变量模式。大型多层评级审查数据集的实验结果证实了我们解决方案的有效性。