In some preference aggregation scenarios, voters' preferences are highly structured: e.g., the set of candidates may have one-dimensional structure (so that voters' preferences are single-peaked) or be described by a binary decision tree (so that voters' preferences are group-separable). However, sometimes a single axis or a decision tree is insufficient to capture the voters' preferences; rather, there is a small number $k$ of axes or decision trees such that each vote in the profile is consistent with one of these axes (resp., trees). In this work, we study the complexity of deciding whether voters' preferences can be explained in this manner. For $k=2$, we obtain a polynomial-time algorithm for several domains: single-peaked preferences (thereby answering a question left open by Erdelyi, Lackner and Pfandler (JAIR'17), value-restricted preferences, group-separable preferences, and a natural subdomain of group-separable preferences, namely, caterpillar group-separable preferences. For $k\ge 3$, the problem is known to be hard for single-peaked preferences; we show that this is also the case for value-restricted and group-separable preferences. Our positive results for $k=2$ make use of forbidden minor characterizations of the respective domains; in particular, we establish that the domain of caterpillar group-separable preferences admits a forbidden minor characterization.
翻译:在一些优惠汇总假设中,选民的偏好结构性很强:例如,一组候选人可能具有一维结构(这样选民的偏好是单峰的),或者用二进制决策树描述(这样选民的偏好是可分的)。然而,有时单轴或决策树不足以捕捉选民的偏好;相反,有少量的斧子或决策树,因此,简介中的每张选票都符合其中的一条轴线(复选,树)。在这项工作中,我们研究决定选民的偏好是否可以以这种方式解释的复杂性。对于 $=2$,我们为几个领域获得一个多元时间的算法:单曲式偏好(这样回答一个由Erdelyi、Lackner和Pfandler(JAIR'17)留下的问题,价值限制的偏好、群体可分的偏好,以及群体可分的自然分位偏好偏好,即毛线群体可分的偏好。对于美元域来说,对于 $=2美元,我们获得一个多多度的混合的算法性算算法的偏好。