We introduce DeepMoD, a Deep learning based Model Discovery algorithm. DeepMoD discovers the partial differential equation underlying a spatio-temporal data set using sparse regression on a library of possible functions and their derivatives. A neural network approximates the data and constructs the function library, but it also performs the sparse regression. This construction makes it extremely robust to noise, applicable to small data sets, and, contrary to other deep learning methods, does not require a training set. We benchmark our approach on several physical problems such as the Burgers', Korteweg-de Vries and Keller-Segel equations, and find that it requires as few as $\mathcal{O}(10^2)$ samples and works at noise levels up to $75\%$. Motivated by these results, we apply DeepMoD directly on noisy experimental time-series data from a gel electrophoresis experiment and find that it discovers the advection-diffusion equation describing this system.


翻译:我们引入了深学习模型发现时间算法DeepMoD, 这是一种基于深学习的模型发现时间算法。 DeepMoD 发现部分差异方程式, 用来在可能函数及其衍生物的图书馆里使用微弱回归法, 以建立spatio- temoral 数据集。 神经网络接近数据, 构建函数库, 但它也执行稀薄回归法 。 这个构造使得它非常坚固地适用于噪音, 适用于小数据集, 并且与其他深层学习方法不同, 不需要训练。 我们把我们的方法以几个物理问题作为基准, 比如 Burgers', Korteweg- de Vries 和 Keller- Segel 等方程式, 发现它需要的样本数量只有$\ mathcal{O}( 10 ⁇ 2), 并在噪音水平上工作, 最多达到 75美元。 我们受这些结果的驱动, 我们直接应用DeepMoD 直接用于热电极实验中的噪音实验时间序列数据, 并发现它发现了描述这个系统的反演化- diftion- diftion 等方程式的公式 。

0
下载
关闭预览

相关内容

可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
17+阅读 · 2019年3月28日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关VIP内容
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Optimization for deep learning: theory and algorithms
Arxiv
104+阅读 · 2019年12月19日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
17+阅读 · 2019年3月28日
Accelerated Methods for Deep Reinforcement Learning
Arxiv
6+阅读 · 2019年1月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2016年2月24日
Top
微信扫码咨询专知VIP会员