We introduce DeepMoD, a Deep learning based Model Discovery algorithm. DeepMoD discovers the partial differential equation underlying a spatio-temporal data set using sparse regression on a library of possible functions and their derivatives. A neural network approximates the data and constructs the function library, but it also performs the sparse regression. This construction makes it extremely robust to noise, applicable to small data sets, and, contrary to other deep learning methods, does not require a training set. We benchmark our approach on several physical problems such as the Burgers', Korteweg-de Vries and Keller-Segel equations, and find that it requires as few as $\mathcal{O}(10^2)$ samples and works at noise levels up to $75\%$. Motivated by these results, we apply DeepMoD directly on noisy experimental time-series data from a gel electrophoresis experiment and find that it discovers the advection-diffusion equation describing this system.
翻译:我们引入了深学习模型发现时间算法DeepMoD, 这是一种基于深学习的模型发现时间算法。 DeepMoD 发现部分差异方程式, 用来在可能函数及其衍生物的图书馆里使用微弱回归法, 以建立spatio- temoral 数据集。 神经网络接近数据, 构建函数库, 但它也执行稀薄回归法 。 这个构造使得它非常坚固地适用于噪音, 适用于小数据集, 并且与其他深层学习方法不同, 不需要训练。 我们把我们的方法以几个物理问题作为基准, 比如 Burgers', Korteweg- de Vries 和 Keller- Segel 等方程式, 发现它需要的样本数量只有$\ mathcal{O}( 10 ⁇ 2), 并在噪音水平上工作, 最多达到 75美元。 我们受这些结果的驱动, 我们直接应用DeepMoD 直接用于热电极实验中的噪音实验时间序列数据, 并发现它发现了描述这个系统的反演化- diftion- diftion 等方程式的公式 。